Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33879608

RESUMEN

Gain-of-function mutations in the CACNA1H gene (encoding the T-type calcium channel CaV3.2) cause autosomal-dominant familial hyperaldosteronism type IV (FH-IV) and early-onset hypertension in humans. We used CRISPR/Cas9 to generate Cacna1hM1560V/+ knockin mice as a model of the most common FH-IV mutation, along with corresponding knockout mice (Cacna1h-/- ). Adrenal morphology of both Cacna1hM1560V/+ and Cacna1h-/- mice was normal. Cacna1hM1560V/+ mice had elevated aldosterone:renin ratios (a screening parameter for primary aldosteronism). Their adrenal Cyp11b2 (aldosterone synthase) expression was increased and remained elevated on a high-salt diet (relative autonomy, characteristic of primary aldosteronism), but plasma aldosterone was only elevated in male animals. The systolic blood pressure of Cacna1hM1560V/+ mice was 8 mmHg higher than in wild-type littermates and remained elevated on a high-salt diet. Cacna1h-/- mice had elevated renal Ren1 (renin-1) expression but normal adrenal Cyp11b2 levels, suggesting that in the absence of CaV3.2, stimulation of the renin-angiotensin system activates alternative calcium entry pathways to maintain normal aldosterone production. On a cellular level, Cacna1hM1560V/+ adrenal slices showed increased baseline and peak intracellular calcium concentrations in the zona glomerulosa compared to controls, but the frequency of calcium spikes did not rise. We conclude that FH-IV, on a molecular level, is caused by elevated intracellular Ca2+ concentrations as a signal for aldosterone production in adrenal glomerulosa cells. We demonstrate that a germline Cacna1h gain-of-function mutation is sufficient to cause mild primary aldosteronism, whereas loss of CaV3.2 channel function can be compensated for in a chronic setting.


Asunto(s)
Señalización del Calcio/fisiología , Hiperaldosteronismo/fisiopatología , Aldosterona/biosíntesis , Animales , Presión Sanguínea , Canales de Calcio/genética , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Citocromo P-450 CYP11B2/metabolismo , Modelos Animales de Enfermedad , Mutación con Ganancia de Función , Hiperaldosteronismo/metabolismo , Hipertensión/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación
2.
Kidney Int ; 99(5): 1102-1117, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33412162

RESUMEN

Focal segmental glomerulosclerosis (FSGS) is a podocytopathy leading to kidney failure, whose molecular cause frequently remains unresolved. Here, we describe a rare MYO9A loss of function nonsense heterozygous mutation (p.Arg701∗) as a possible contributor to disease in a sibling pair with familial FSGS/proteinuria. MYO9A variants of uncertain significance were identified by whole exome sequencing in a cohort of 94 biopsy proven patients with FSGS. MYO9A is an unconventional myosin with a Rho-GAP domain that controls epithelial cell junction assembly, crosslinks and bundles actin and deactivates the small GTPase protein encoded by the RHOA gene. RhoA activity is associated with cytoskeleton regulation of actin stress fiber formation and actomyosin contractility. Myo9A was detected in mouse and human podocytes in vitro and in vivo. Knockin mice carrying the p.Arg701∗MYO9A (Myo9AR701X) generated by gene editing developed proteinuria, podocyte effacement and FSGS. Kidneys and podocytes from Myo9AR701X/+ mutant mice revealed Myo9A haploinsufficiency, increased RhoA activity, decreased Myo9A-actin-calmodulin interaction, impaired podocyte attachment and migration. Our results indicate that Myo9A is a novel component of the podocyte cytoskeletal apparatus that regulates RhoA activity and podocyte function. Thus, Myo9AR701X/+ knock-in mice recapitulate the proband FSGS phenotype, demonstrate that p.R701X Myo9A is an FSGS-causing mutation in mice and suggest that heterozygous loss-of-function MYO9A mutations may cause a novel form of human autosomal dominant FSGS. Hence, identification of MYO9A pathogenic variants in additional individuals with familial or sporadic FSGS is needed to ascertain the gene contribution to disease.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Miosinas/genética , Podocitos , Animales , Proteínas Activadoras de GTPasa/genética , Glomeruloesclerosis Focal y Segmentaria/genética , Humanos , Ratones , Miosinas/metabolismo , Fenotipo
3.
Development ; 145(7)2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29549111

RESUMEN

Developmental gene expression patterns are orchestrated by thousands of distant-acting transcriptional enhancers. However, identifying enhancers essential for the expression of their target genes has proven challenging. Maps of long-range regulatory interactions may provide the means to identify enhancers crucial for developmental gene expression. To investigate this hypothesis, we used circular chromosome conformation capture coupled with interaction maps in the mouse limb to characterize the regulatory topology of Pitx1, which is essential for hindlimb development. We identified a robust hindlimb-specific interaction between Pitx1 and a putative hindlimb-specific enhancer. To interrogate the role of this interaction in Pitx1 regulation, we used genome editing to delete this enhancer in mouse. Although deletion of the enhancer completely disrupts the interaction, Pitx1 expression in the hindlimb is only mildly affected, without any detectable compensatory interactions between the Pitx1 promoter and potentially redundant enhancers. Pitx1 enhancer null mice did not exhibit any of the characteristic morphological defects of the Pitx1-/- mutant. Our results suggest that robust, tissue-specific physical interactions at essential developmental genes have limited predictive value for identifying enhancer mutations with strong loss-of-function phenotypes.


Asunto(s)
Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Morfogénesis/genética , Factores de Transcripción Paired Box/metabolismo , Animales , Elementos de Facilitación Genéticos/genética , Hibridación in Situ , Ratones , Ratones Noqueados , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Circ Res ; 124(6): 874-880, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30707082

RESUMEN

RATIONALE: Inhibition of miR-33 reduces atherosclerotic plaque burden, but miR-33 deficient mice are predisposed to the development of obesity and metabolic dysfunction. The proatherogenic effects of miR-33 are thought to be in large part because of its repression of macrophage cholesterol efflux, through targeting of Abca1 (ATP-binding cassette subfamily A member 1). However, targeting of other factors may also be required for the beneficial effects of miR-33, and currently available approaches have not allowed researchers to determine the specific impact of individual miRNA target interactions in vivo. OBJECTIVE: In this work, we sought to determine how specific disruption of Abca1 targeting by miR-33 impacts macrophage cholesterol efflux and atherosclerotic plaque formation in vivo. METHODS AND RESULTS: We have generated a novel mouse model with specific point mutations in the miR-33 binding sites of the Abca1 3'untranslated region, which prevents targeting by miR-33. Abca1 binding site mutant ( Abca1BSM) mice had increased hepatic ABCA1 expression but did not show any differences in body weight or metabolic function after high fat diet feeding. Macrophages from Abca1BSM mice also had increased ABCA1 expression, as well as enhanced cholesterol efflux and reduced foam cell formation. Moreover, LDLR (low-density lipoprotein receptor) deficient animals transplanted with bone marrow from Abca1BSM mice had reduced atherosclerotic plaque formation, similar to mice transplanted with bone marrow from miR-33 knockout mice. CONCLUSION: Although the more pronounced phenotype of miR-33 deficient animals suggests that other targets may also play an important role, our data clearly demonstrate that repression of ABCA1 is primarily responsible for the proatherogenic effects of miR-33. This work shows for the first time that disruption of a single miRNA/target interaction can be sufficient to mimic the effects of miRNA deficiency on complex physiological phenotypes in vivo and provides an approach by which to assess the impact of individual miRNA targets.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/fisiología , Colesterol/metabolismo , Macrófagos/metabolismo , MicroARNs/fisiología , Placa Aterosclerótica/etiología , Transportador 1 de Casete de Unión a ATP/genética , Animales , Sitios de Unión , Ratones , Ratones Noqueados , Receptores de LDL/fisiología
5.
Proc Natl Acad Sci U S A ; 109(17): 6632-7, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22493258

RESUMEN

DNA is susceptible to damage by a wide variety of chemical agents that are generated either as byproducts of cellular metabolism or exposure to man-made and harmful environments. Therefore, to maintain genomic integrity, having reliable DNA repair systems is important. DNA polymerase ß is known to be a key player in the base excision repair pathway, and mice devoid of DNA polymerase beta do not live beyond a few hours after birth. In this study, we characterized mice harboring an impaired pol ß variant. This Y265C pol ß variant exhibits slow DNA polymerase activity but WT lyase activity and has been shown to be a mutator polymerase. Mice expressing Y265C pol ß are born at normal Mendelian ratios. However, they are small, and 60% die within a few hours after birth. Slow proliferation and significantly increased levels of cell death are observed in many organs of the E14 homozygous embryos compared with WT littermates. Mouse embryo fibroblasts prepared from the Y265C pol ß embryos proliferate at a rate slower than WT cells and exhibit a gap-filling deficiency during base excision repair. As a result of this, chromosomal aberrations and single- and double-strand breaks are present at significantly higher levels in the homozygous mutant versus WT mouse embryo fibroblasts. This is study in mice is unique in that two enzymatic activities of pol ß have been separated; the data clearly demonstrate that the DNA polymerase activity of pol ß is essential for survival and genome stability.


Asunto(s)
ADN Polimerasa beta/genética , Reparación del ADN , Sobrevida , Animales , Apoptosis/efectos de los fármacos , Secuencia de Bases , Proliferación Celular , Células Cultivadas , Aberraciones Cromosómicas , Cartilla de ADN , Citometría de Flujo , Técnicas de Sustitución del Gen , Homocigoto , Metilmetanosulfonato/farmacología , Ratones , Ratones Transgénicos , Reacción en Cadena de la Polimerasa
6.
Nat Genet ; 38(4): 474-8, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16532010

RESUMEN

Urolithiasis is one of the most common urologic diseases in industrialized societies. Calcium oxalate is the predominant component in 70-80% of kidney stones, and small changes in urinary oxalate concentration affect the risk of stone formation. SLC26A6 is an anion exchanger expressed on the apical membrane in many epithelial tissues, including kidney and intestine. Among its transport activities, SLC26A6 mediates Cl(-)-oxalate exchange. Here we show that mutant mice lacking Slc26a6 develop a high incidence of calcium oxalate urolithiasis. Slc26a6-null mice have significant hyperoxaluria and elevation in plasma oxalate concentration that is greatly attenuated by dietary oxalate restriction. In vitro flux studies indicated that mice lacking Slc26a6 have a defect in intestinal oxalate secretion resulting in enhanced net absorption of oxalate. We conclude that the anion exchanger SLC26A6 has a major constitutive role in limiting net intestinal absorption of oxalate, thereby preventing hyperoxaluria and calcium oxalate urolithiasis.


Asunto(s)
Antiportadores/fisiología , Oxalato de Calcio/metabolismo , Cálculos Urinarios/genética , Animales , Antiportadores/genética , Oxalato de Calcio/sangre , Oxalato de Calcio/orina , Ratones , Ratones Noqueados , Transportadores de Sulfato , Cálculos Urinarios/sangre , Cálculos Urinarios/metabolismo , Cálculos Urinarios/orina
7.
Stem Cells ; 31(5): 895-905, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23335078

RESUMEN

Discovery of the cellular and molecular mechanisms of induced pluripotency has been hampered by its low efficiency and slow kinetics. Here, we report an experimental system with multicolor time-lapse microscopy that permits direct observation of pluripotency induction at single cell resolution, with temporal intervals as short as 5 minutes. Using granulocyte-monocyte progenitors as source cells, we visualized nascent pluripotent cells that emerge from a hematopoietic state. We engineered a suite of image processing and analysis software to annotate the behaviors of the reprogramming cells, which revealed the highly dynamic cell-cell interactions associated with early reprogramming. We observed frequent cell migration, which can lead to sister colonies, satellite colonies, and colonies of mixed genetic makeup. In addition, we discovered a previously unknown morphologically distinct two-cell intermediate of reprogramming, which occurs prior to other reprogramming landmarks. By directly visualizing the reprogramming process with E-cadherin inhibition, we demonstrate that E-cadherin is required for proper cellular interactions from an early stage of reprogramming, including the two-cell intermediate. The detailed cell-cell interactions revealed by this imaging platform shed light on previously unappreciated early reprogramming dynamics. This experimental system could serve as a powerful tool to dissect the complex mechanisms of early reprogramming by focusing on the relevant but rare cells with superb temporal and spatial resolution.


Asunto(s)
Comunicación Celular/fisiología , Movimiento Celular/fisiología , Reprogramación Celular/fisiología , Animales , Cadherinas/antagonistas & inhibidores , Cadherinas/metabolismo , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Femenino , Ratones , Ratones Endogámicos C57BL , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Imagen de Lapso de Tiempo/métodos
8.
Genome Biol ; 25(1): 156, 2024 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872220

RESUMEN

BACKGROUND: Genetic changes that modify the function of transcriptional enhancers have been linked to the evolution of biological diversity across species. Multiple studies have focused on the role of nucleotide substitutions, transposition, and insertions and deletions in altering enhancer function. CpG islands (CGIs) have recently been shown to influence enhancer activity, and here we test how their turnover across species contributes to enhancer evolution. RESULTS: We integrate maps of CGIs and enhancer activity-associated histone modifications obtained from multiple tissues in nine mammalian species and find that CGI content in enhancers is strongly associated with increased histone modification levels. CGIs show widespread turnover across species and species-specific CGIs are strongly enriched for enhancers exhibiting species-specific activity across all tissues and species. Genes associated with enhancers with species-specific CGIs show concordant biases in their expression, supporting that CGI turnover contributes to gene regulatory innovation. Our results also implicate CGI turnover in the evolution of Human Gain Enhancers (HGEs), which show increased activity in human embryonic development and may have contributed to the evolution of uniquely human traits. Using a humanized mouse model, we show that a highly conserved HGE with a large CGI absent from the mouse ortholog shows increased activity at the human CGI in the humanized mouse diencephalon. CONCLUSIONS: Collectively, our results point to CGI turnover as a mechanism driving gene regulatory changes potentially underlying trait evolution in mammals.


Asunto(s)
Islas de CpG , Elementos de Facilitación Genéticos , Evolución Molecular , Animales , Humanos , Ratones , Especificidad de la Especie , Código de Histonas
9.
bioRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38352419

RESUMEN

Transcriptional enhancers orchestrate cell type- and time point-specific gene expression programs. Evolution of enhancer sequences can alter target gene expression without causing detrimental misexpression in other contexts. It has long been thought that this modularity allows evolutionary changes in enhancers to escape pleiotropic constraints, which is especially important for evolutionary constrained developmental patterning genes. However, there is still little data supporting this hypothesis. Here we identified signatures of accelerated evolution in conserved enhancer elements across the mammalian phylogeny. We found that pleiotropic genes involved in gene regulatory and developmental processes were enriched for accelerated sequence evolution within their enhancer elements. These genes were associated with an excess number of enhancers compared to other genes, and due to this they exhibit a substantial degree of sequence acceleration over all their enhancers combined. We provide evidence that sequence acceleration is associated with turnover of regulatory function. We studied one acceleration event in depth and found that its sequence evolution led to the emergence of a new enhancer activity domain that may be involved in the evolution of digit reduction in hoofed mammals. Our results provide tangible evidence that enhancer evolution has been a frequent contributor to modifications involving constrained developmental signaling genes in mammals.

10.
bioRxiv ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38328095

RESUMEN

It is widely believed that tissue mechanical properties, determined mainly by the extracellular matrix (ECM), are actively maintained. However, despite its broad importance to biology and medicine, tissue mechanical homeostasis is poorly understood. To explore this hypothesis, we developed mutations in the mechanosensitive protein talin1 that alter cellular sensing of ECM stiffness. Mutation of a novel mechanosensitive site between talin1 rod domain helix bundles 1 and 2 (R1 and R2) shifted cellular stiffness sensing curves, enabling cells to spread and exert tension on compliant substrates. Opening of the R1-R2 interface promotes binding of the ARP2/3 complex subunit ARPC5L, which mediates the altered stiffness sensing. Ascending aortas from mice bearing these mutations show increased compliance, less fibrillar collagen, and rupture at lower pressure. Together, these results demonstrate that cellular stiffness sensing regulates ECM mechanical properties. These data thus directly support the mechanical homeostasis hypothesis and identify a novel mechanosensitive interaction within talin that contributes to this mechanism.

11.
Proc Natl Acad Sci U S A ; 107(45): 19473-8, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-20962279

RESUMEN

In nonneuronopathic type 1 Gaucher disease (GD1), mutations in the glucocerebrosidase gene (GBA1) gene result in glucocerebrosidase deficiency and the accumulation of its substrate, glucocerebroside (GL-1), in the lysosomes of mononuclear phagocytes. This prevailing macrophage-centric view, however, does not explain emerging aspects of the disease, including malignancy, autoimmune disease, Parkinson disease, and osteoporosis. We conditionally deleted the GBA1 gene in hematopoietic and mesenchymal cell lineages using an Mx1 promoter. Although this mouse fully recapitulated human GD1, cytokine measurements, microarray analysis, and cellular immunophenotyping together revealed widespread dysfunction not only of macrophages, but also of thymic T cells, dendritic cells, and osteoblasts. The severe osteoporosis was caused by a defect in osteoblastic bone formation arising from an inhibitory effect of the accumulated lipids LysoGL-1 and GL-1 on protein kinase C. This study provides direct evidence for the involvement in GD1 of multiple cell lineages, suggesting that cells other than macrophages may be worthwhile therapeutic targets.


Asunto(s)
Enfermedad de Gaucher/patología , Eliminación de Gen , Glucosilceramidasa/deficiencia , Macrófagos/patología , Animales , Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Células Madre Hematopoyéticas/citología , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Osteoporosis/etiología , Fenotipo , Regiones Promotoras Genéticas
12.
bioRxiv ; 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37214934

RESUMEN

Genetic changes that modify the function of transcriptional enhancers have been linked to the evolution of biological diversity across species. Multiple studies have focused on the role of nucleotide substitutions, transposition, and insertions and deletions in altering enhancer function. Here we show that turnover of CpG islands (CGIs), which contribute to enhancer activation, is broadly associated with changes in enhancer activity across mammals, including humans. We integrated maps of CGIs and enhancer activity-associated histone modifications obtained from multiple tissues in nine mammalian species and found that CGI content in enhancers was strongly associated with increased histone modification levels. CGIs showed widespread turnover across species and species-specific CGIs were strongly enriched for enhancers exhibiting species-specific activity across all tissues and species we examined. Genes associated with enhancers with species-specific CGIs showed concordant biases in their expression, supporting that CGI turnover contributes to gene regulatory innovation. Our results also implicate CGI turnover in the evolution of Human Gain Enhancers (HGEs), which show increased activity in human embryonic development and may have contributed to the evolution of uniquely human traits. Using a humanized mouse model, we show that a highly conserved HGE with a large CGI absent from the mouse ortholog shows increased activity at the human CGI in the humanized mouse diencephalon. Collectively, our results point to CGI turnover as a mechanism driving gene regulatory changes potentially underlying trait evolution in mammals.

13.
JCI Insight ; 8(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37698934

RESUMEN

Somatic gain-of-function mutations in the L-type calcium channel CaV1.3 (CACNA1D gene) cause adrenal aldosterone-producing adenomas and micronodules. De novo germline mutations are found in a syndrome of primary aldosteronism, seizures, and neurologic abnormalities (PASNA) as well as in autism spectrum disorder. Using CRISPR/Cas9, we here generated mice with a Cacna1d gain-of-function mutation found in both adenomas and PASNA syndrome (Cacna1dIle772Met/+). These mice show reduced body weight and increased mortality from weaning to approximately 100 days of age. Male mice do not breed, likely due to neuromotor impairment, and the offspring of female mice die perinatally, likely due to lack of maternal care. Mice generated by in vitro fertilization showed elevated intracellular calcium in the aldosterone-producing zona glomerulosa, an elevated aldosterone/renin ratio, and persistently elevated serum aldosterone on a high-salt diet as signs of primary aldosteronism. Anesthesia with ketamine and xylazine induced tonic-clonic seizures. Neurologic abnormalities included hyperlocomotion, impaired performance in the rotarod test, impaired nest building, and slight changes in social behavior. Intracellular calcium in the zona glomerulosa, aldosterone levels, and rotarod performance responded to treatment with the calcium channel blocker isradipine, with implications for the therapy of patients with aldosterone-producing lesions and with PASNA syndrome.


Asunto(s)
Adenoma , Trastorno del Espectro Autista , Hiperaldosteronismo , Humanos , Masculino , Femenino , Ratones , Animales , Aldosterona , Hiperaldosteronismo/tratamiento farmacológico , Hiperaldosteronismo/genética , Isradipino , Calcio , Mutación , Convulsiones
14.
bioRxiv ; 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36993588

RESUMEN

To elucidate the pathogenesis of vein of Galen malformations (VOGMs), the most common and severe congenital brain arteriovenous malformation, we performed an integrated analysis of 310 VOGM proband-family exomes and 336,326 human cerebrovasculature single-cell transcriptomes. We found the Ras suppressor p120 RasGAP ( RASA1 ) harbored a genome-wide significant burden of loss-of-function de novo variants (p=4.79×10 -7 ). Rare, damaging transmitted variants were enriched in Ephrin receptor-B4 ( EPHB4 ) (p=1.22×10 -5 ), which cooperates with p120 RasGAP to limit Ras activation. Other probands had pathogenic variants in ACVRL1 , NOTCH1 , ITGB1 , and PTPN11 . ACVRL1 variants were also identified in a multi-generational VOGM pedigree. Integrative genomics defined developing endothelial cells as a key spatio-temporal locus of VOGM pathophysiology. Mice expressing a VOGM-specific EPHB4 kinase-domain missense variant exhibited constitutive endothelial Ras/ERK/MAPK activation and impaired hierarchical development of angiogenesis-regulated arterial-capillary-venous networks, but only when carrying a "second-hit" allele. These results illuminate human arterio-venous development and VOGM pathobiology and have clinical implications.

15.
Nat Commun ; 14(1): 7452, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978175

RESUMEN

To elucidate the pathogenesis of vein of Galen malformations (VOGMs), the most common and most severe of congenital brain arteriovenous malformations, we performed an integrated analysis of 310 VOGM proband-family exomes and 336,326 human cerebrovasculature single-cell transcriptomes. We found the Ras suppressor p120 RasGAP (RASA1) harbored a genome-wide significant burden of loss-of-function de novo variants (2042.5-fold, p = 4.79 x 10-7). Rare, damaging transmitted variants were enriched in Ephrin receptor-B4 (EPHB4) (17.5-fold, p = 1.22 x 10-5), which cooperates with p120 RasGAP to regulate vascular development. Additional probands had damaging variants in ACVRL1, NOTCH1, ITGB1, and PTPN11. ACVRL1 variants were also identified in a multi-generational VOGM pedigree. Integrative genomic analysis defined developing endothelial cells as a likely spatio-temporal locus of VOGM pathophysiology. Mice expressing a VOGM-specific EPHB4 kinase-domain missense variant (Phe867Leu) exhibited disrupted developmental angiogenesis and impaired hierarchical development of arterial-capillary-venous networks, but only in the presence of a "second-hit" allele. These results illuminate human arterio-venous development and VOGM pathobiology and have implications for patients and their families.


Asunto(s)
Enfermedades Vasculares , Malformaciones de la Vena de Galeno , Humanos , Animales , Ratones , Malformaciones de la Vena de Galeno/genética , Malformaciones de la Vena de Galeno/patología , Células Endoteliales/patología , Mutación , Transducción de Señal/genética , Mutación Missense , Proteínas Activadoras de GTPasa/genética , Receptores de Activinas Tipo II/genética , Proteína Activadora de GTPasa p120/genética
16.
J Clin Med ; 11(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35887942

RESUMEN

Microvillus inclusion disease (MVID), a lethal congenital diarrheal disease, results from loss of function mutations in the apical actin motor myosin VB (MYO5B). How loss of MYO5B leads to both malabsorption and fluid secretion is not well understood. Serum glucocorticoid-inducible kinase 1 (SGK1) regulates intestinal carbohydrate and ion transporters including cystic fibrosis transmembrane conductance regulator (CFTR). We hypothesized that loss of SGK1 could reduce CFTR fluid secretion and MVID diarrhea. Using CRISPR-Cas9 approaches, we generated R26CreER;MYO5Bf/f conditional single knockout (cMYO5BKO) and R26CreER;MYO5Bf/f;SGK1f/f double knockout (cSGK1/MYO5B-DKO) mice. Tamoxifen-treated cMYO5BKO mice resulted in characteristic features of human MVID including severe diarrhea, microvillus inclusions (MIs) in enterocytes, defective apical traffic, and depolarization of transporters. However, apical CFTR distribution was preserved in crypts and depolarized in villus enterocytes, and CFTR high expresser (CHE) cells were observed. cMYO5BKO mice displayed increased phosphorylation of SGK1, PDK1, and the PDK1 target PKCι in the intestine. Surprisingly, tamoxifen-treated cSGK1/MYO5B-DKO mice displayed more severe diarrhea than cMYO5BKO, with preservation of apical CFTR and CHE cells, greater fecal glucose and reduced SGLT1 and GLUT2 in the intestine. We conclude that loss of SGK1 worsens carbohydrate malabsorption and diarrhea in MVID.

17.
DNA Repair (Amst) ; 109: 103247, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826736

RESUMEN

Oxidative DNA damage as a result of normal cellular metabolism, inflammation, or exposure to exogenous DNA damaging agents if left unrepaired, can result in genomic instability, a precursor to cancer and other diseases. Nth-like DNA glycosylase 1 (NTHL1) is an evolutionarily conserved bifunctional DNA glycosylase that primarily removes oxidized pyrimidine lesions. NTHL1 D239Y is a germline variant identified in both heterozygous and homozygous state in the human population. Here, we have generated a knockin mouse model carrying Nthl1 D227Y (mouse homologue of D239Y) using CRISPR-cas9 genome editing technology and investigated the cellular effects of the variant in the heterozygous (Y/+) and homozygous (Y/Y) state using murine embryonic fibroblasts. We identified a significant increase in double stranded breaks, genomic instability, replication stress and impaired proliferation in both the Nthl1 D227Y heterozygous Y/+ and homozygous mutant Y/Y MEFs. Importantly, we identified that the presence of the D227Y variant interferes with repair by the WT protein, possibly by binding and shielding the lesions. The cellular phenotypes observed in D227Y mutant MEFs suggest that both the heterozygous and homozygous carriers of this NTHL1 germline mutation may be at increased risk for the development of DNA damage-associated diseases, including cancer.


Asunto(s)
Reparación del ADN , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Fibroblastos/enzimología , Inestabilidad Genómica , Mutación Missense , Animales , ADN/efectos de los fármacos , ADN/metabolismo , Daño del ADN , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Fibroblastos/metabolismo , Técnicas de Sustitución del Gen , Ratones , Ratones Mutantes , Mutágenos/toxicidad , Estrés Oxidativo , Vitamina K 3/toxicidad
18.
ACR Open Rheumatol ; 4(9): 760-770, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35708944

RESUMEN

OBJECTIVE: To determine if single-nucleotide polymorphisms (SNPs) in DNA repair genes are enriched in individuals with systemic lupus erythematosus (SLE) and if they are sufficient to confer a disease phenotype in a mouse model. METHODS: Human exome chip data of 2499 patients with SLE and 1230 healthy controls were analyzed to determine if variants in 10 different mismatch repair genes (MSH4, EXO1, MSH2, MSH6, MLH1, MSH3, POLH, PMS2, ML3, and APEX2) were enriched in individuals with SLE. A mouse model of the MSH6 SNP, which was found to be enriched in individuals with SLE, was created using CRISPR/Cas9 gene targeting. Wildtype mice and mice heterozygous and homozygous for the MSH6 variant were then monitored for 2 years for the development of autoimmune phenotypes, including the presence of high levels of antinuclear antibodies (ANA). Additionally, somatic hypermutation frequencies and spectra of the intronic region downstream of the VH J558-rearranged JH4 immunoglobulin gene was characterized from Peyer's patches. RESULTS: Based on the human exome chip data, the MSH6 variant (rs63750897, p.Ser503Cys) is enriched among patients with SLE versus controls after we corrected for ancestry (odds ratio = 8.39, P = 0.0398). Mice homozygous for the MSH6 variant (Msh6S502C/S502C ) harbor significantly increased levels of ANA. Additionally, the Msh6S502C/S502C mice display a significant increase in the infiltration of CD68+ cells (a marker for monocytes and macrophages) into the lung alveolar space as well as apoptotic cells. Furthermore, characterization of somatic hypermutation in these mice reveals an increase in the DNA polymerase η mutational signature. CONCLUSION: An MSH6 mutation that is enriched in humans diagnosed with lupus was identified. Mice harboring this Msh6 mutation develop increased autoantibodies and an inflammatory lung disease. These results suggest that the human MSH6 variant is linked to the development of SLE.

19.
Nat Commun ; 13(1): 304, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35027568

RESUMEN

The evolution of uniquely human traits likely entailed changes in developmental gene regulation. Human Accelerated Regions (HARs), which include transcriptional enhancers harboring a significant excess of human-specific sequence changes, are leading candidates for driving gene regulatory modifications in human development. However, insight into whether HARs alter the level, distribution, and timing of endogenous gene expression remains limited. We examined the role of the HAR HACNS1 (HAR2) in human evolution by interrogating its molecular functions in a genetically humanized mouse model. We find that HACNS1 maintains its human-specific enhancer activity in the mouse embryo and modifies expression of Gbx2, which encodes a transcription factor, during limb development. Using single-cell RNA-sequencing, we demonstrate that Gbx2 is upregulated in the limb chondrogenic mesenchyme of HACNS1 homozygous embryos, supporting that HACNS1 alters gene expression in cell types involved in skeletal patterning. Our findings illustrate that humanized mouse models provide mechanistic insight into how HARs modified gene expression in human evolution.


Asunto(s)
Regulación de la Expresión Génica , Genoma , Modelos Genéticos , Animales , Secuencia de Bases , Diferenciación Celular/genética , Condrocitos/citología , Condrogénesis/genética , Embrión de Mamíferos/metabolismo , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Extremidades/embriología , Perfilación de la Expresión Génica , Técnicas de Sustitución del Gen , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Homocigoto , Humanos , Mesodermo/embriología , Mesodermo/metabolismo , Ratones Endogámicos C57BL , Pan troglodytes , Regiones Promotoras Genéticas/genética , Factores de Tiempo
20.
Biochem Biophys Res Commun ; 379(2): 526-31, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-19116141

RESUMEN

Intestinal crypt stem cells establish clonal descendants. To determine whether the pancreas is patterned by a similar process, we used embryonic stem (ES) cell chimeric mice, in which male ES cells were injected into female blastocysts. Fluorescence in situ hybridization for the Y chromosome (Y-FISH) revealed clonal patterning of ES-derived cells in the adult mouse small intestine and pancreas. Intestinal crypts were entirely male or entirely female. Villi contained columns of male or female epithelial cells, consistent with upward migration of cells from the crypts which surround them. Within the exocrine pancreas, acini were entirely male or entirely female, consistent with patterning from a single stem/progenitor cell. Pancreatic islets contained a mixture of male and female cells, consistent with patterning from multiple progenitors. Male-female chimeric mice demonstrate that the adult mouse exocrine pancreatic acinus is patterned from a single stem/progenitor cell, while the endocrine pancreas arises from multiple progenitors.


Asunto(s)
Quimera/crecimiento & desarrollo , Islotes Pancreáticos/crecimiento & desarrollo , Páncreas Exocrino/crecimiento & desarrollo , Animales , Movimiento Celular , Quimera/genética , Células Clonales , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Femenino , Hibridación Fluorescente in Situ , Intestinos/citología , Islotes Pancreáticos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Páncreas Exocrino/citología , Cromosoma Y/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA