Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Foods ; 12(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37297353

RESUMEN

Aspergillus ochraceus and Aspergillus niger are spoilage and mycotoxin-producing fungi that can contaminate agricultural commodities and derived products. In the present study, menthol, eugenol, and their combination (mix 1:1) were tested to determine their contact and fumigation toxicity against the two fungi. Menthol, eugenol, and their mixture significantly reduced mycelial growth and spore germination at concentrations from 300 to 600 µg/mL, and the inhibitory effects showed clear dose dependence. The minimum inhibitory concentration (MIC) values against A. ochraceus were 500 µg/mL (menthol), 400 µg/mL (eugenol), and 300 µg/mL (mix 1:1), while the MIC values for A. niger were 500 µg/mL (menthol), 600 µg/mL (eugenol), and 400 µg/mL (mix 1:1). Additionally, the analyzed compounds exhibited more than 50% protection against A. ochraceus and A. niger by fumigation of stored cereal grains (maize, barley, and rice) in sealed containers. The binary mixture of menthol and eugenol showed synergistic effects against both fungi in both in vitro direct contact and stored grain fumigation trials. The results of the present study provide a scientific basis for the application of a combination of natural antifungals in food preservation.

2.
Heliyon ; 9(7): e18138, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37496903

RESUMEN

Nowadays, coffee (Coffea Arabica L.) is among the most significant agricultural products of the world and drinking coffee has become one of the most popular habits in the world. The main contamination of stored coffee beans is related with the mycotoxin produced by the toxigenic fungi belonging the genus Aspergillus. Fungal infection followed by mycotoxin biosynthesis in coffee results in notable financial losses. subsequent mycotoxin biosynthesis in coffee leads to major economic losses. Complications ranging from mild to severe can be caused by the mycotoxins produced by this genus. The aim of this investigation was to determine the effect of menthol and eugenol on Aspergillus parasiticus (CBS 100926T) growth, spore germination, and their potential use as green coffee beans preservative during long-term storage (12 months). The minimum inhibitory concentrations (MICs) values of the menthol and eugenol were recorded to completely inhibit the growth of A. parasiticus in 400 µg/ml and 300 µg/ml, respectively. Both reduced spore germination by 9.33% and 5.66% at 300 µg/ml and 200 µg/ml, respectively. They showed efficacy in fumigated green coffee beans sample during the storage for up to 12 months providing an increase in the protection level of 62.5% for menthol and 73.21% for eugenol against the A. parasiticus contamination. This suggests that menthol and eugenol could be used as good alternatives for decreasing the deteriorations due to the fungal infections in green coffee beans during long-term storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA