Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cardiovasc Eng Technol ; 15(1): 1-11, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38129334

RESUMEN

Pulmonary vascular impedance (PVZ) describes RV afterload in the frequency domain and has not been studied extensively in LVAD patients. We sought to determine (1) feasibility of calculating a composite (c)PVZ using standard of care (SoC), asynchronous, pulmonary artery pressure (PAP) and flow (PAQ) waveforms; and (2) if chronic right ventricular failure (RVF) post-LVAD implant was associated with changes in perioperative cPVZ.PAP and PAQ were obtained via SoC procedures at three landmarks: T(1), Retrospectively, pre-operative with patient conscious; and T(2) and T(3), prospectively with patient anesthetized, and either pre-sternotomy or chest open with LVAD, respectively. Additional PAP's were taken at T(4), following chest closure; and T(5), 4-24 h post chest closure. Harmonics (z) were calculated by Fast Fourier Transform (FFT) with cPVZ(z) = FFT(PAP)/FFT(PAQ). Total pulmonary resistance Z(0); characteristic impedance Zc, mean of cPVZ(2-4); and vascular stiffness PVS, sum of cPVZ(1,2), were compared at T(1,2,3) between +/-RVF groups.Out of 51 patients, nine experienced RVF. Standard hemodynamics and changes in cPVZ-derived parameters were not significant between groups at any T.In conclusion, cPVZ calculated from SoC measures is possible. Although data that could be obtained were limited it suggests no difference in RV afterload for RVF patients post-implant. If confirmed in larger studies, focus should be placed on cardiac function in these subjects.


Asunto(s)
Insuficiencia Cardíaca , Corazón Auxiliar , Humanos , Estudios Retrospectivos , Impedancia Eléctrica , Estudios de Factibilidad , Hemodinámica
2.
Chronic Obstr Pulm Dis ; 10(1): 55-63, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36563054

RESUMEN

Background: Lung hyperinflation with elevated residual volume (RV) is associated with poor prognosis in adults with chronic obstructive pulmonary disease (COPD) and is a critical criterion for lung volume reduction selection. Here, we proposed that patterns within spirometric measures could represent the degree of hyperinflation. Methods: Fractional polynomial multivariate regression was used to develop a prediction model based on age, biological sex, forced expiratory volume in 1 second (FEV1), and forced vital capacity (FVC) to estimate plethysmography measured RV in patients in the Pittsburgh Specialized Center for Clinically Oriented Research (SCCOR) cohort (n=450). Receiver operating characteristic area under the curve (ROC-AUC) and optimal cut-points from the model were identified. The model was validated in a separate cohort (n=793). Results: The best fit model: RV %est=[FVC %predicted] x 3.46-[FEV1/FVC] x 179.80- [FVC % (sqrt)] x 79.53-[age] x 0.98- [sex] x 10.88 + 737.06, where [sex], m=1. R2 of observed versus %predicted RV was 0.71. The optimal cut-point to predict an RV % >175% was 161. At this cut-point, ROC-AUC was 0.95, with a sensitivity 0.95, specificity 0.86, positive predictive value (PPV) of 97%, negative predictive value (NPV) of 76%, positive likelihood ratio (LR) of 6.6, and negative LR of 0.06. In a validation cohort of COPD patients (n=793), the model performed similarly, with a sensitivity of 0.82, specificity of 0.83, PPV of 85%, NPV of 79%, positive LR of 4.7, and negative LR of 0.21. Conclusion: In patients with COPD, a model using only spirometry, age, and biological sex can estimate elevated RV. This tool could facilitate the identification of candidates for lung volume reduction procedures and can be integrated into existing epidemiologic databases to investigate the clinical impact of hyperinflation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA