Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Euro Surveill ; 29(23)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847119

RESUMEN

BackgroundThe COVID-19 pandemic was largely driven by genetic mutations of SARS-CoV-2, leading in some instances to enhanced infectiousness of the virus or its capacity to evade the host immune system. To closely monitor SARS-CoV-2 evolution and resulting variants at genomic-level, an innovative pipeline termed SARSeq was developed in Austria.AimWe discuss technical aspects of the SARSeq pipeline, describe its performance and present noteworthy results it enabled during the pandemic in Austria.MethodsThe SARSeq pipeline was set up as a collaboration between private and public clinical diagnostic laboratories, a public health agency, and an academic institution. Representative SARS-CoV-2 positive specimens from each of the nine Austrian provinces were obtained from SARS-CoV-2 testing laboratories and processed centrally in an academic setting for S-gene sequencing and analysis.ResultsSARS-CoV-2 sequences from up to 2,880 cases weekly resulted in 222,784 characterised case samples in January 2021-March 2023. Consequently, Austria delivered the fourth densest genomic surveillance worldwide in a very resource-efficient manner. While most SARS-CoV-2 variants during the study showed comparable kinetic behaviour in all of Austria, some, like Beta, had a more focused spread. This highlighted multifaceted aspects of local population-level acquired immunity. The nationwide surveillance system enabled reliable nowcasting. Measured early growth kinetics of variants were predictive of later incidence peaks.ConclusionWith low automation, labour, and cost requirements, SARSeq is adaptable to monitor other pathogens and advantageous even for resource-limited countries. This multiplexed genomic surveillance system has potential as a rapid response tool for future emerging threats.


Asunto(s)
COVID-19 , Genoma Viral , SARS-CoV-2 , Humanos , Austria/epidemiología , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/virología , COVID-19/diagnóstico , Mutación , Genómica/métodos , Pandemias , Evolución Molecular , Secuenciación Completa del Genoma/métodos
2.
Cell Stem Cell ; 31(6): 866-885.e14, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38718796

RESUMEN

Mutations in ARID1B, a member of the mSWI/SNF complex, cause severe neurodevelopmental phenotypes with elusive mechanisms in humans. The most common structural abnormality in the brain of ARID1B patients is agenesis of the corpus callosum (ACC), characterized by the absence of an interhemispheric white matter tract that connects distant cortical regions. Here, we find that neurons expressing SATB2, a determinant of callosal projection neuron (CPN) identity, show impaired maturation in ARID1B+/- neural organoids. Molecularly, a reduction in chromatin accessibility of genomic regions targeted by TCF-like, NFI-like, and ARID-like transcription factors drives the differential expression of genes required for corpus callosum (CC) development. Through an in vitro model of the CC tract, we demonstrate that this transcriptional dysregulation impairs the formation of long-range axonal projections, causing structural underconnectivity. Our study uncovers new functions of the mSWI/SNF during human corticogenesis, identifying cell-autonomous axonogenesis defects in SATB2+ neurons as a cause of ACC in ARID1B patients.


Asunto(s)
Axones , Cuerpo Calloso , Proteínas de Unión al ADN , Organoides , Factores de Transcripción , Humanos , Cuerpo Calloso/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Organoides/metabolismo , Axones/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Transcripción Genética , Neuronas/metabolismo
3.
Nat Aging ; 4(1): 80-94, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38238601

RESUMEN

Skeletal muscle plays a central role in the regulation of systemic metabolism during lifespan. With aging, this function is perturbed, initiating multiple chronic diseases. Our knowledge of mechanisms responsible for this decline is limited. Glycerophosphocholine phosphodiesterase 1 (Gpcpd1) is a highly abundant muscle enzyme that hydrolyzes glycerophosphocholine (GPC). The physiological functions of Gpcpd1 remain largely unknown. Here we show, in mice, that the Gpcpd1-GPC metabolic pathway is perturbed in aged muscles. Further, muscle-specific, but not liver- or fat-specific, inactivation of Gpcpd1 resulted in severely impaired glucose metabolism. Western-type diets markedly worsened this condition. Mechanistically, Gpcpd1 muscle deficiency resulted in accumulation of GPC, causing an 'aged-like' transcriptomic signature and impaired insulin signaling in young Gpcpd1-deficient muscles. Finally, we report that the muscle GPC levels are markedly altered in both aged humans and patients with type 2 diabetes, displaying a high positive correlation between GPC levels and chronological age. Our findings reveal that the muscle GPCPD1-GPC metabolic pathway has an important role in the regulation of glucose homeostasis and that it is impaired during aging, which may contribute to glucose intolerance in aging.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucosa , Glicerilfosforilcolina , Fosfolipasas , Anciano , Animales , Humanos , Ratones , Envejecimiento/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Redes y Vías Metabólicas , Músculo Esquelético/metabolismo , Fosfolipasas/metabolismo , Glicerilfosforilcolina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA