Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(5): 2603-2620, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35188560

RESUMEN

The Spt4-Spt5 complex is conserved and essential RNA polymerase elongation factor. To investigate the role of the Spt4-Spt5 complex in non-coding transcription during development, we used the unicellular model Paramecium tetraurelia. In this organism harboring both germline and somatic nuclei, massive transcription of the entire germline genome takes place during meiosis. This phenomenon starts a series of events mediated by different classes of non-coding RNAs that control developmentally programmed DNA elimination. We focused our study on Spt4, a small zinc-finger protein encoded in P. tetraurelia by two genes expressed constitutively and two genes expressed during meiosis. SPT4 genes are not essential in vegetative growth, but they are indispensable for sexual reproduction, even though genes from both expression families show functional redundancy. Silencing of the SPT4 genes resulted in the absence of double-stranded ncRNAs and reduced levels of scnRNAs - 25 nt-long sRNAs produced from these double-stranded precursors in the germline nucleus. Moreover, we observed that the presence of a germline-specific Spt4-Spt5m complex is necessary for transfer of the scnRNA-binding PIWI protein between the germline and somatic nucleus. Our study establishes that Spt4, together with Spt5m, is essential for expression of the germline genome and necessary for developmental genome rearrangements.


Asunto(s)
Genoma de Protozoos , Paramecium tetraurelia , Meiosis , Paramecium tetraurelia/citología , Paramecium tetraurelia/genética , Paramecium tetraurelia/crecimiento & desarrollo , ARN no Traducido/genética , Factores de Transcripción/metabolismo , Transcripción Genética
2.
Nucleic Acids Res ; 45(8): 4722-4732, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28053118

RESUMEN

Spt5 is a conserved and essential transcriptional regulator that binds directly to RNA polymerase and is involved in transcription elongation, polymerase pausing and various co-transcriptional processes. To investigate the role of Spt5 in non-coding transcription, we used the unicellular model Paramecium tetraurelia. In this ciliate, development is controlled by epigenetic mechanisms that use different classes of non-coding RNAs to target DNA elimination. We identified two SPT5 genes. One (STP5v) is involved in vegetative growth, while the other (SPT5m) is essential for sexual reproduction. We focused our study on SPT5m, expressed at meiosis and associated with germline nuclei during sexual processes. Upon Spt5m depletion, we observed absence of scnRNAs, piRNA-like 25 nt small RNAs produced at meiosis. The scnRNAs are a temporal copy of the germline genome and play a key role in programming DNA elimination. Moreover, Spt5m depletion abolishes elimination of all germline-limited sequences, including sequences whose excision was previously shown to be scnRNA-independent. This suggests that in addition to scnRNA production, Spt5 is involved in setting some as yet uncharacterized epigenetic information at meiosis. Our study establishes that Spt5m is crucial for developmental genome rearrangements and necessary for scnRNA production.


Asunto(s)
Meiosis/genética , Reproducción/genética , Transcripción Genética , Factores de Elongación Transcripcional/genética , Epigénesis Genética , Regulación de la Expresión Génica/genética , Reordenamiento Génico/genética , Genoma , Paramecium tetraurelia/genética
3.
PLoS Genet ; 11(7): e1005383, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26177014

RESUMEN

Because of their nuclear dimorphism, ciliates provide a unique opportunity to study the role of non-coding RNAs (ncRNAs) in the communication between germline and somatic lineages. In these unicellular eukaryotes, a new somatic nucleus develops at each sexual cycle from a copy of the zygotic (germline) nucleus, while the old somatic nucleus degenerates. In the ciliate Paramecium tetraurelia, the genome is massively rearranged during this process through the reproducible elimination of repeated sequences and the precise excision of over 45,000 short, single-copy Internal Eliminated Sequences (IESs). Different types of ncRNAs resulting from genome-wide transcription were shown to be involved in the epigenetic regulation of genome rearrangements. To understand how ncRNAs are produced from the entire genome, we have focused on a homolog of the TFIIS elongation factor, which regulates RNA polymerase II transcriptional pausing. Six TFIIS-paralogs, representing four distinct families, can be found in P. tetraurelia genome. Using RNA interference, we showed that TFIIS4, which encodes a development-specific TFIIS protein, is essential for the formation of a functional somatic genome. Molecular analyses and high-throughput DNA sequencing upon TFIIS4 RNAi demonstrated that TFIIS4 is involved in all kinds of genome rearrangements, including excision of ~48% of IESs. Localization of a GFP-TFIIS4 fusion revealed that TFIIS4 appears specifically in the new somatic nucleus at an early developmental stage, before IES excision. RT-PCR experiments showed that TFIIS4 is necessary for the synthesis of IES-containing non-coding transcripts. We propose that these IES+ transcripts originate from the developing somatic nucleus and serve as pairing substrates for germline-specific short RNAs that target elimination of their homologous sequences. Our study, therefore, connects the onset of zygotic non coding transcription to the control of genome plasticity in Paramecium, and establishes for the first time a specific role of TFIIS in non-coding transcription in eukaryotes.


Asunto(s)
Genoma , ARN Largo no Codificante/genética , Transcripción Genética , Factores de Elongación Transcripcional/genética , Linaje de la Célula , Células Germinativas , Secuenciación de Nucleótidos de Alto Rendimiento , Paramecium tetraurelia/genética , ARN Polimerasa II/genética
4.
Nature ; 444(7116): 171-8, 2006 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-17086204

RESUMEN

The duplication of entire genomes has long been recognized as having great potential for evolutionary novelties, but the mechanisms underlying their resolution through gene loss are poorly understood. Here we show that in the unicellular eukaryote Paramecium tetraurelia, a ciliate, most of the nearly 40,000 genes arose through at least three successive whole-genome duplications. Phylogenetic analysis indicates that the most recent duplication coincides with an explosion of speciation events that gave rise to the P. aurelia complex of 15 sibling species. We observed that gene loss occurs over a long timescale, not as an initial massive event. Genes from the same metabolic pathway or protein complex have common patterns of gene loss, and highly expressed genes are over-retained after all duplications. The conclusion of this analysis is that many genes are maintained after whole-genome duplication not because of functional innovation but because of gene dosage constraints.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Genoma de Protozoos/genética , Genómica , Paramecium tetraurelia/genética , Animales , Células Eucariotas/metabolismo , Genes Duplicados/genética , Genes Protozoarios/genética , Datos de Secuencia Molecular , Filogenia
5.
Eukaryot Cell ; 10(3): 363-72, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21257794

RESUMEN

Like all ciliates, Paramecium tetraurelia is a unicellular eukaryote that harbors two kinds of nuclei within its cytoplasm. At each sexual cycle, a new somatic macronucleus (MAC) develops from the germ line micronucleus (MIC) through a sequence of complex events, which includes meiosis, karyogamy, and assembly of the MAC genome from MIC sequences. The latter process involves developmentally programmed genome rearrangements controlled by noncoding RNAs and a specialized RNA interference machinery. We describe our first attempts to identify genes and biological processes that contribute to the progression of the sexual cycle. Given the high percentage of unknown genes annotated in the P. tetraurelia genome, we applied a global strategy to monitor gene expression profiles during autogamy, a self-fertilization process. We focused this pilot study on the genes carried by the largest somatic chromosome and designed dedicated DNA arrays covering 484 genes from this chromosome (1.2% of all genes annotated in the genome). Transcriptome analysis revealed four major patterns of gene expression, including two successive waves of gene induction. Functional analysis of 15 upregulated genes revealed four that are essential for vegetative growth, one of which is involved in the maintenance of MAC integrity and another in cell division or membrane trafficking. Two additional genes, encoding a MIC-specific protein and a putative RNA helicase localizing to the old and then to the new MAC, are specifically required during sexual processes. Our work provides a proof of principle that genes essential for meiosis and nuclear reorganization can be uncovered following genome-wide transcriptome analysis.


Asunto(s)
Macronúcleo/metabolismo , Micronúcleo Germinal/metabolismo , Paramecium tetraurelia/metabolismo , Proteínas Protozoarias/metabolismo , Autofecundación , Regulación del Desarrollo de la Expresión Génica , Macronúcleo/genética , Micronúcleo Germinal/genética , Paramecium tetraurelia/genética , Paramecium tetraurelia/crecimiento & desarrollo , Proteínas Protozoarias/genética
6.
Curr Biol ; 14(15): 1397-404, 2004 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-15296759

RESUMEN

Paramecium, like other ciliates, remodels its entire germline genome at each sexual generation to produce a somatic genome stripped of transposons and other multicopy elements. The germline chromosomes are fragmented by a DNA elimination process that targets heterochromatin to give a reproducible set of some 200 linear molecules 50 kb to 1 Mb in size. These chromosomes are maintained at a ploidy of 800n in the somatic macronucleus and assure all gene expression. We isolated and sequenced the largest megabase somatic chromosome in order to explore its organization and gene content. The AT-rich (72%) chromosome is compact, with very small introns (average size 25 nt), short intergenic regions (median size 202 nt), and a coding density of at least 74%, higher than that reported for budding yeast (70%) or any other free-living eukaryote. Similarity to known proteins could be detected for 57% of the 460 potential protein coding genes. Thirty-two of the proteins are shared with vertebrates but absent from yeast, consistent with the morphogenetic complexity of Paramecium, a long-standing model for differentiated functions shared with metazoans but often absent from simpler eukaryotes. Extrapolation to the whole genome suggests that Paramecium has at least 30,000 genes.


Asunto(s)
Cromosomas/genética , Genes Protozoarios/genética , Genoma de Protozoos , Paramecium tetraurelia/genética , Animales , Composición de Base , Secuencia de Bases , Mapeo Cromosómico , Componentes del Gen , Biblioteca de Genes , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de Secuencia de ADN , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA