Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Infect Dis ; 23(1): 857, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057707

RESUMEN

Every novel infection requires an assessment of the host response coupled with identification of unique biomarkers for predicting disease pathogenesis, treatment targets and diagnostic utility. Studies have exposed dysregulated inflammatory response induced by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as significant predictor or cause of disease severity/prognosis and death. This study evaluated inflammatory biomarkers induced by SARS-CoV-2 in plasma of patients with varying disease phenotypes and healthy controls with prognostic or therapeutic potential. We stratified SARS-CoV-2 plasma samples based on disease status (asymptomatic, mild, severe, and healthy controls), as diagnosed by RT-PCR SARS-CoV-2. We used a solid phase sandwich and competitive Enzyme-Linked Immunosorbent Assay (ELISA) to measure levels of panels of immunological (IFN-γ, TNF-α, IL-6, and IL-10) and biochemical markers (Ferritin, Procalcitonin, C-Reactive Protein, Angiotensin II, Homocysteine, and D-dimer). Biomarker levels were compared across SARS-CoV-2 disease stratification. Plasma IFN-γ, TNF-α, IL-6, and IL-10 levels were significantly (P < 0.05) elevated in the severe SARS-CoV-2 patients as compared to mild, asymptomatic, and healthy controls. Ferritin, Homocysteine, and D-dimer plasma levels were significantly elevated in severe cases over asymptomatic and healthy controls. Plasma C-reactive protein and Angiotensin II levels were significantly (P < 0.05) higher in mild than severe cases and healthy controls. Plasma Procalcitonin levels were significantly higher in asymptomatic than in mild, severe cases and healthy controls. Our study demonstrates the role of host inflammatory biomarkers in modulating the pathogenesis of COVID-19. The study proposes a number of potential biomarkers that could be explored as SARS-CoV-2 treatment targets and possible prognostic predictors for a severe outcome. The comprehensive analysis of prognostic biomarkers may contribute to the evidence-based management of COVID-19 patients.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Interleucina-10 , Proteína C-Reactiva/análisis , Factor de Necrosis Tumoral alfa , Interleucina-6 , Polipéptido alfa Relacionado con Calcitonina , Uganda , Angiotensina II , Biomarcadores , Fenotipo , Ferritinas , Homocisteína
2.
Pathogens ; 12(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36839567

RESUMEN

East Coast fever (ECF) is a tick-borne disease of cattle that hinders the development of the livestock industry in eastern, central and southern Africa. The 'Muguga cocktail' live vaccine, delivered by an infection and treatment method (ITM), remains the only immunisation strategy of controlling ECF. However, there are challenges of the live vaccine inducing ECF carrier status in immunised animals and the possibility of lack of protection from parasite strains that are antigenically different from the vaccine strains. In Uganda, there are insufficient data regarding the ECF carrier status and T. parva genetic diversity in vaccinated and associated non-vaccinated cattle to assess the effectiveness of ITM vaccination. Blood was collected from recently ECF vaccinated (98) and non-vaccinated (73) cattle from Iganga district in Eastern Uganda at 120 days post-vaccination. The p104 gene nested PCR was used to screen for T. parva DNA, 11 minisatellite and 3 microsatellite markers (SSR) were used for genotyping. Two minisatellite markers (MS7 and MS19) were used to determine whether ECF carrier status was due to the T. parva vaccine or local strains. The prevalence of T. parva based on p104 nPCR was 61.2% (60/98) (RR 2.234, 95% CI 1.49-3.35, p-value < 0.001) among recently vaccinated cattle and 27.4% (20/73) (RR 1.00) among associated non-vaccinated cattle. The Muguga cocktail vaccine strains were responsible for carrier status in 10 (58.8%) by MS7 and 11 (64.7%) by MS19 in vaccinated cattle. Genotypes of T. parva with different-sized alleles to the vaccine strains that could be potential 'breakthroughs' were detected in 2 (11.8%)) and 4 (23.5%) isolates from vaccinated cattle based on MS7 and MS19 minisatellite markers, respectively. Using 14 SSR markers, T. parva diversity was higher in vaccinated (Na = 2.214, Ne = 1.978, He = 0.465) than associated non-vaccinated (Na = 1.071, Ne = 1.048, He = 0.259) cattle. The principal component analysis (PCA) showed isolates from vaccinated cattle were closely related to those from non-vaccinated cattle. The analysis of molecular variance (AMOVA) revealed high genetic variation (96%) within T. parva isolates from vaccinated and non-vaccinated cattle but low variation (4%) between vaccinated and non-vaccinated cattle. This study reveals the role of ITM in inducing the carrier status and higher T. parva genetic diversity in vaccinated cattle. The low genetic variation between T. parva isolates in both vaccinated and non-vaccinated cattle may be suggestive of the protective role of vaccine strains against genetically related local strains in the study area.

3.
Pathogens ; 12(1)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36678463

RESUMEN

The integrated control of East Coast fever (ECF) by early diagnosis and treatment involving acquired immunity induced by natural infection in Ankole cattle was assessed. A longitudinal study was carried out in Kiruhura district, southwestern Uganda for six months on 244 Ankole breed of cattle from 18 herds under natural tick challenge and relaxed tick control measures. Calves aged three to six months old were recruited and monitored daily by farmers for detection of ECF clinical symptoms. The reported sick animals were treated using Buparvaquone and treatment outcome determined. Monthly follow-ups and blood collections were done to monitor ECF status. Blood was analyzed for Theileria parva parasites by microscopy, DNA by polymerase chain reaction (PCR) and antibodies by enzyme-linked immunosorbent assay (ELISA). The overall prevalence of ECF clinical disease within six months period was 30.3% (74). The major symptoms of early clinical ECF disease were fever and enlarged parotid or prescapular lymph nodes. Clinical cases were categorized as mild, 24% (18) or moderate, 76% (56). There was an overall recovery rate of 100% (74) of the ECF cases whereby 94.6% (70) recovered promptly and 5.4% (4) recovered slowly. Based on blood analysis, prevalence of ECF at baseline was 3.7% (9) by microscopy, 31.1% (76) by PCR and 38.1% (93) by ELISA. A significant increase (p < 0.05) was shown by the increased number of calves with T. parva specific antibodies in the sera from 38.1% at baseline to 68.8% after six months. High antibody levels (positive percentage ≥ 50%) were detected in all ECF-treated and recovered calves at the end of six months. The acquired immunity to ECF was high in treated and recovered cattle, indicating that natural exposure to infection, accurate early diagnosis and effective treatment enhance development of immune-protection in indigenous cattle in an endemic area. The prominent early clinical symptoms for ECF could be exploited in the development of decision support tools for chemotherapy and other integrated control measures.

4.
BMC Res Notes ; 15(1): 97, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255971

RESUMEN

OBJECTIVE: Currently, the only available staging criterion for T. b. rhodesiense requires a lumber puncture to collect and later examine cerebrospinal fluid (CSF). This study examined the potential of plasma Neuron-Specific Enolase (NSE) in discriminating between early and late-stage patients. RESULTS: When median NSE levels were compared between early and late-stage patients, results showed a significant (P < 0.02) upregulation among late-stage patients (599.8 ng/mL). No significant differences (P > 0.9) in NSE levels were observed between early-stage patients (300 ng/mL) and controls (454 ng/mL). We used Receiver Operator Characteristic (ROC) curves to explore the likelihood of using plasma NSE as a potential stage biomarker in discriminating between early and late-stage HAT patients. Our results showed that NSE demonstrated an area under the curve (AUC) of 0.702 (95% CI 0.583-0.830). A high staging accuracy for NSE was obtained by using a cutoff of > 346.5 ng/mL with a sensitivity of 68.6% (95% CI 55-79.7%) and a specificity of 93.3% (95% CI 70.2-99.7%). Although our results demonstrate that plasma NSE is upregulated in T. b. rhodesiense sleeping sickness patients, its value in discriminating between late and early-stage patients is limited. However, future studies could consider improving its specificity by combining it with other identified plasma biomarkers.


Asunto(s)
Trypanosoma brucei rhodesiense , Tripanosomiasis Africana , Animales , Biomarcadores/líquido cefalorraquídeo , Humanos , Fosfopiruvato Hidratasa , Plasma , Tripanosomiasis Africana/diagnóstico
5.
Artículo en Inglés | MEDLINE | ID: mdl-31687034

RESUMEN

BACKGROUND: Immunological Human African Trypanosomiasis (HAT) studies often exclude malaria, although both infections overlap in specific endemic areas. During this co-infection, it is not known whether this parasitic interaction induces synergistic or antagonistic cytokine response among humans. This study determined prevalence of Plasmodium falciparum malaria among Trypanosoma brucei rhodesiense HAT and plasma cytokine profile levels associated with HAT and/or malaria infections. METHODS: Participants were recruited at Lwala hospital in north eastern Uganda: healthy controls (30), malaria (28), HAT (17), HAT and malaria (15) diagnosed by microscopy and PCR was carried out for parasite species identification. Plasma cytokine levels of Interferon-gamma (IFN-γ), Tumour Necrosis Factor-alpha (TNF-α), Interleukin (IL)-6, IL-10 and Transforming Growth Factor-beta (TGF-ß) were measured by sandwich Enzyme-Linked Immuno Sorbent Assay and data statistically analysed using Graphpad Prism 6.0. RESULTS: The prevalence of P. falciparum malaria among T. rhodesiense HAT cases was high (46.8%). Malaria and/or HAT cases presented significant higher plasma cytokine levels of IFN-γ, TNF-α, IL-6, IL-10 and TGF-ß than healthy controls (P < 0.05). Levels of IFN-γ, IL-6 and IL-10 were significantly elevated in HAT over malaria (P < 0.05) but no significant difference in TNF-α and TGF-ß between HAT and malaria (P > 0.05). Co-infection expressed significantly higher plasma IFN-γ, IL-6, and IL-10 levels than malaria (P < 0.05) but no significant difference with HAT mono-infection (P > 0.05). The TNF-α level was significantly elevated in co-infection over HAT or malaria mono-infections (P < 0.05) unlike TGF-ß level. Significant positive correlations were identified between IFN-γ verses TNF-α and IL-6 verses IL-10 in co-infection (Spearman's P < 0.05). CONCLUSIONS: The T. b. rhodesiense significantly induced the cytokine response more than P. falciparum infections. Co-infection led to synergistic stimulation of pro-inflammatory (IFN-γ, TNF-α), and anti-inflammatory (IL-6, and IL-10) cytokine responses relative to malaria mono-infection. Level of TNF-α partially indicates the effect induced by T. b. rhodesiense and P. falciparum mono-infections or a synergistic interaction of co-infections which may have adverse effects on pathogenesis, prognosis and resolution of the infections.Trial registration VCD-IRC/021, 26/08/2011; HS 1089, 16/01/2012.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA