Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JMIR Serious Games ; 8(3): e17823, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32876575

RESUMEN

BACKGROUND: The role of emotion is crucial to the learning process, as it is linked to motivation, interest, and attention. Affective states are expressed in the brain and in overall biological activity. Biosignals, like heart rate (HR), electrodermal activity (EDA), and electroencephalography (EEG) are physiological expressions affected by emotional state. Analyzing these biosignal recordings can point to a person's emotional state. Contemporary medical education has progressed extensively towards diverse learning resources using virtual reality (VR) and mixed reality (MR) applications. OBJECTIVE: This paper aims to study the efficacy of wearable biosensors for affect detection in a learning process involving a serious game in the Microsoft HoloLens VR/MR platform. METHODS: A wearable array of sensors recording HR, EDA, and EEG signals was deployed during 2 educational activities conducted by 11 participants of diverse educational level (undergraduate, postgraduate, and specialist neurosurgeon doctors). The first scenario was a conventional virtual patient case used for establishing the personal biosignal baselines for the participant. The second was a case in a VR/MR environment regarding neuroanatomy. The affective measures that we recorded were EEG (theta/beta ratio and alpha rhythm), HR, and EDA. RESULTS: Results were recorded and aggregated across all 3 groups. Average EEG ratios of the virtual patient (VP) versus the MR serious game cases were recorded at 3.49 (SD 0.82) versus 3.23 (SD 0.94) for students, 2.59 (SD 0.96) versus 2.90 (SD 1.78) for neurosurgeons, and 2.33 (SD 0.26) versus 2.56 (SD 0.62) for postgraduate medical students. Average alpha rhythm of the VP versus the MR serious game cases were recorded at 7.77 (SD 1.62) µV versus 8.42 (SD 2.56) µV for students, 7.03 (SD 2.19) µV versus 7.15 (SD 1.86) µV for neurosurgeons, and 11.84 (SD 6.15) µV versus 9.55 (SD 3.12) µV for postgraduate medical students. Average HR of the VP versus the MR serious game cases were recorded at 87 (SD 13) versus 86 (SD 12) bpm for students, 81 (SD 7) versus 83 (SD 7) bpm for neurosurgeons, and 81 (SD 7) versus 77 (SD 6) bpm for postgraduate medical students. Average EDA of the VP versus the MR serious game cases were recorded at 1.198 (SD 1.467) µS versus 4.097 (SD 2.79) µS for students, 1.890 (SD 2.269) µS versus 5.407 (SD 5.391) µS for neurosurgeons, and 0.739 (SD 0.509) µS versus 2.498 (SD 1.72) µS for postgraduate medical students. The variations of these metrics have been correlated with existing theoretical interpretations regarding educationally relevant affective analytics, such as engagement and educational focus. CONCLUSIONS: These results demonstrate that this novel sensor configuration can lead to credible affective state detection and can be used in platforms like intelligent tutoring systems for providing real-time, evidence-based, affective learning analytics using VR/MR-deployed medical education resources.

2.
Front Psychol ; 11: 612835, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519632

RESUMEN

Human-Computer Interaction (HCI) and games set a new domain in understanding people's motivations in gaming, behavioral implications of game play, game adaptation to player preferences and needs for increased engaging experiences in the context of HCI serious games (HCI-SGs). When the latter relate with people's health status, they can become a part of their daily life as assistive health status monitoring/enhancement systems. Co-designing HCI-SGs can be seen as a combination of art and science that involves a meticulous collaborative process. The design elements in assistive HCI-SGs for Parkinson's Disease (PD) patients, in particular, are explored in the present work. Within this context, the Game-Based Learning (GBL) design framework is adopted here and its main game-design parameters are explored for the Exergames, Dietarygames, Emotional games, Handwriting games, and Voice games design, drawn from the PD-related i-PROGNOSIS Personalized Game Suite (PGS) (www.i-prognosis.eu) holistic approach. Two main data sources were involved in the study. In particular, the first one includes qualitative data from semi-structured interviews, involving 10 PD patients and four clinicians in the co-creation process of the game design, whereas the second one relates with data from an online questionnaire addressed by 104 participants spanning the whole related spectrum, i.e., PD patients, physicians, software/game developers. Linear regression analysis was employed to identify an adapted GBL framework with the most significant game-design parameters, which efficiently predict the transferability of the PGS beneficial effect to real-life, addressing functional PD symptoms. The findings of this work can assist HCI-SG designers for designing PD-related HCI-SGs, as the most significant game-design factors were identified, in terms of adding value to the role of HCI-SGs in increasing PD patients' quality of life, optimizing the interaction with personalized HCI-SGs and, hence, fostering a collaborative human-computer symbiosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA