Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 185(10): 1793-1805.e17, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35483372

RESUMEN

The lack of tools to observe drug-target interactions at cellular resolution in intact tissue has been a major barrier to understanding in vivo drug actions. Here, we develop clearing-assisted tissue click chemistry (CATCH) to optically image covalent drug targets in intact mammalian tissues. CATCH permits specific and robust in situ fluorescence imaging of target-bound drug molecules at subcellular resolution and enables the identification of target cell types. Using well-established inhibitors of endocannabinoid hydrolases and monoamine oxidases, direct or competitive CATCH not only reveals distinct anatomical distributions and predominant cell targets of different drug compounds in the mouse brain but also uncovers unexpected differences in drug engagement across and within brain regions, reflecting rare cell types, as well as dose-dependent target shifts across tissue, cellular, and subcellular compartments that are not accessible by conventional methods. CATCH represents a valuable platform for visualizing in vivo interactions of small molecules in tissue.


Asunto(s)
Química Clic , Imagen Óptica , Animales , Encéfalo , Sistemas de Liberación de Medicamentos , Mamíferos , Ratones , Imagen Óptica/métodos
2.
Nature ; 631(8021): 601-609, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987587

RESUMEN

Exaggerated airway constriction triggered by repeated exposure to allergen, also called hyperreactivity, is a hallmark of asthma. Whereas vagal sensory neurons are known to function in allergen-induced hyperreactivity1-3, the identity of downstream nodes remains poorly understood. Here we mapped a full allergen circuit from the lung to the brainstem and back to the lung. Repeated exposure of mice to inhaled allergen activated the nuclei of solitary tract (nTS) neurons in a mast cell-, interleukin-4 (IL-4)- and vagal nerve-dependent manner. Single-nucleus RNA sequencing, followed by RNAscope assay at baseline and allergen challenges, showed that a Dbh+ nTS population is preferentially activated. Ablation or chemogenetic inactivation of Dbh+ nTS neurons blunted hyperreactivity whereas chemogenetic activation promoted it. Viral tracing indicated that Dbh+ nTS neurons project to the nucleus ambiguus (NA) and that NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that directly drive airway constriction. Delivery of noradrenaline antagonists to the NA blunted hyperreactivity, suggesting noradrenaline as the transmitter between Dbh+ nTS and NA. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. This knowledge informs how neural modulation could be used to control allergen-induced airway hyperreactivity.


Asunto(s)
Alérgenos , Tronco Encefálico , Hiperreactividad Bronquial , Dopamina beta-Hidroxilasa , Pulmón , Neuronas , Animales , Femenino , Masculino , Ratones , Alérgenos/inmunología , Asma/inmunología , Asma/fisiopatología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Hiperreactividad Bronquial/tratamiento farmacológico , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/fisiopatología , Interleucina-4/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/inervación , Pulmón/fisiopatología , Mastocitos/inmunología , Neuronas/enzimología , Neuronas/fisiología , Norepinefrina/antagonistas & inhibidores , Norepinefrina/metabolismo , Núcleo Solitario/citología , Núcleo Solitario/fisiología , Nervio Vago/citología , Nervio Vago/fisiología , Bulbo Raquídeo/citología , Bulbo Raquídeo/efectos de los fármacos , Ganglios Autónomos/citología , Dopamina beta-Hidroxilasa/metabolismo
3.
Nature ; 621(7977): 138-145, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37587337

RESUMEN

Maintaining body temperature is calorically expensive for endothermic animals1. Mammals eat more in the cold to compensate for energy expenditure2, but the neural mechanism underlying this coupling is not well understood. Through behavioural and metabolic analyses, we found that mice dynamically switch between energy-conservation and food-seeking states in the cold, the latter of which are primarily driven by energy expenditure rather than the sensation of cold. To identify the neural mechanisms underlying cold-induced food seeking, we used whole-brain c-Fos mapping and found that the xiphoid (Xi), a small nucleus in the midline thalamus, was selectively activated by prolonged cold associated with elevated energy expenditure but not with acute cold exposure. In vivo calcium imaging showed that Xi activity correlates with food-seeking episodes under cold conditions. Using activity-dependent viral strategies, we found that optogenetic and chemogenetic stimulation of cold-activated Xi neurons selectively recapitulated food seeking under cold conditions whereas their inhibition suppressed it. Mechanistically, Xi encodes a context-dependent valence switch that promotes food-seeking behaviours under cold but not warm conditions. Furthermore, these behaviours are mediated by a Xi-to-nucleus accumbens projection. Our results establish Xi as a key region in the control of cold-induced feeding, which is an important mechanism in the maintenance of energy homeostasis in endothermic animals.


Asunto(s)
Temperatura Corporal , Frío , Conducta Alimentaria , Tálamo , Animales , Ratones , Temperatura Corporal/fisiología , Mapeo Encefálico , Calcio/metabolismo , Conducta Alimentaria/fisiología , Metabolismo Energético/fisiología , Tálamo/anatomía & histología , Tálamo/citología , Tálamo/fisiología , Optogenética , Neuronas/metabolismo , Núcleo Accumbens/citología , Núcleo Accumbens/fisiología , Homeostasis/fisiología , Termogénesis/fisiología
4.
Nature ; 609(7927): 569-574, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36045288

RESUMEN

Adipose tissues communicate with the central nervous system to maintain whole-body energy homeostasis. The mainstream view is that circulating hormones secreted by the fat convey the metabolic state to the brain, which integrates peripheral information and regulates adipocyte function through noradrenergic sympathetic output1. Moreover, somatosensory neurons of the dorsal root ganglia innervate adipose tissue2. However, the lack of genetic tools to selectively target these neurons has limited understanding of their physiological importance. Here we developed viral, genetic and imaging strategies to manipulate sensory nerves in an organ-specific manner in mice. This enabled us to visualize the entire axonal projection of dorsal root ganglia from the soma to subcutaneous adipocytes, establishing the anatomical underpinnings of adipose sensory innervation. Functionally, selective sensory ablation in adipose tissue enhanced the lipogenic and thermogenetic transcriptional programs, resulting in an enlarged fat pad, enrichment of beige adipocytes and elevated body temperature under thermoneutral conditions. The sensory-ablation-induced phenotypes required intact sympathetic function. We postulate that beige-fat-innervating sensory neurons modulate adipocyte function by acting as a brake on the sympathetic system. These results reveal an important role of the innervation by dorsal root ganglia of adipose tissues, and could enable future studies to examine the role of sensory innervation of disparate interoceptive systems.


Asunto(s)
Tejido Adiposo , Células Receptoras Sensoriales , Tejido Adiposo/inervación , Tejido Adiposo/metabolismo , Tejido Adiposo Beige/inervación , Tejido Adiposo Beige/metabolismo , Animales , Axones , Metabolismo Energético , Ganglios Espinales/fisiología , Homeostasis , Hormonas/metabolismo , Ratones , Especificidad de Órganos , Células Receptoras Sensoriales/fisiología , Grasa Subcutánea/inervación , Grasa Subcutánea/metabolismo , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/fisiología , Termogénesis/genética
5.
EMBO J ; 40(24): e106061, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34459015

RESUMEN

Non-neuronal cholinergic signaling, mediated by acetylcholine, plays important roles in physiological processes including inflammation and immunity. Our group first discovered evidence of non-neuronal cholinergic circuitry in adipose tissue, whereby immune cells secrete acetylcholine to activate beige adipocytes during adaptive thermogenesis. Here, we reveal that macrophages are the cellular protagonists responsible for secreting acetylcholine to regulate thermogenic activation in subcutaneous fat, and we term these cells cholinergic adipose macrophages (ChAMs). An adaptive increase in ChAM abundance is evident following acute cold exposure, and macrophage-specific deletion of choline acetyltransferase (ChAT), the enzyme for acetylcholine biosynthesis, impairs the cold-induced thermogenic capacity of mice. Further, using pharmacological and genetic approaches, we show that ChAMs are regulated via adrenergic signaling, specifically through the ß2 adrenergic receptor. These findings demonstrate that macrophages are an essential adipose tissue source of acetylcholine for the regulation of adaptive thermogenesis, and may be useful for therapeutic targeting in metabolic diseases.


Asunto(s)
Acetilcolina/metabolismo , Colina O-Acetiltransferasa/genética , Macrófagos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Grasa Subcutánea/citología , Animales , Células Cultivadas , Frío , Eliminación de Gen , Técnicas de Inactivación de Genes , Ratones , Cultivo Primario de Células , Grasa Subcutánea/metabolismo , Termogénesis
6.
Nat Methods ; 19(4): 479-485, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35347322

RESUMEN

The recent development of solvent- and polymer-based brain-clearing techniques has advanced our ability to visualize the mammalian nervous system in three dimensions. However, it remains challenging to image the mammalian body en bloc. Here we developed HYBRiD (hydrogel-based reinforcement of three-dimensional imaging solvent-cleared organs (DISCO)), by recombining components of organic- and polymer-based clearing pipelines. We achieved high transparency and protein retention, as well as compatibility with direct fluorescent imaging and immunostaining in cleared mammalian bodies. Using parvalbumin- and somatostatin-Cre models, we demonstrated the utility of HYBRiD for whole-body imaging of genetically encoded fluorescent reporters without antibody enhancement of signals in newborn and juvenile mice. Using K18-hACE2 transgenic mice, HYBRiD enabled perfusion-free clearing and visualization of SARS-CoV-2 infection in a whole mouse chest, revealing macroscopic and microscopic features of viral pathology in the same sample. HYBRiD offers a simple and universal solution to visualize large heterogeneous body parts or entire animals for basic and translational research.


Asunto(s)
COVID-19 , Hidrogeles , Animales , Imagenología Tridimensional/métodos , Mamíferos , Ratones , Polímeros , SARS-CoV-2 , Solventes
7.
bioRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36778350

RESUMEN

Chronic exposure of the lung to irritants such as allergen is a primary cause of asthma characterized by exaggerated airway constriction, also called hyperreactivity, which can be life-threatening. Aside from immune cells, vagal sensory neurons are important for airway hyperreactivity 1-4 . However, the identity and signature of the downstream nodes of this adaptive circuit remains poorly understood. Here we show that a single population of Dbh + neurons in the nucleus of the solitary tract (nTS) of the brainstem, and downstream neurons in the nucleus ambiguous (NA), are both necessary and sufficient for chronic allergen-induced airway hyperreactivity. We found that repeated exposures of mice to inhaled allergen activates nTS neurons in a mast cell-, interleukin 4 (IL-4)-and vagal nerve-dependent manner. Single-nucleus RNA-seq of the nTS at baseline and following allergen challenges reveals that a Dbh + population is preferentially activated. Ablation or chemogenetic inactivation of Dbh + nTS neurons blunted, while chemogenetic activation promoted hyperreactivity. Viral tracing indicates that Dbh + nTS neurons, capable of producing norepinephrine, project to the NA, and NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that then directly drive airway constriction. Focusing on transmitters, delivery of norepinephrine antagonists to the NA blunted allergen-induced hyperreactivity. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. The knowledge opens the possibility of targeted neural modulation as an approach to control refractory allergen-induced airway constriction.

8.
bioRxiv ; 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36993706

RESUMEN

Maintaining body temperature is calorically expensive for endothermic animals. Mammals eat more in the cold to compensate for energy expenditure, but the neural mechanism underlying this coupling is not well understood. Through behavioral and metabolic analyses, we found that mice dynamically switch between energy conservation and food-seeking states in the cold, the latter of which is primarily driven by energy expenditure rather than the sensation of cold. To identify the neural mechanisms underlying cold-induced food seeking, we use whole-brain cFos mapping and found that the xiphoid (Xi), a small nucleus in the midline thalamus, was selectively activated by prolonged cold associated with elevated energy expenditure but not with acute cold exposure. In vivo calcium imaging showed that Xi activity correlates with food-seeking episodes in cold conditions. Using activity-dependent viral strategies, we found that optogenetic and chemogenetic stimulation of cold-activated Xi neurons recapitulated cold-induced feeding, whereas their inhibition suppressed it. Mechanistically, Xi encodes a context-dependent valence switch promoting food-seeking behaviors in cold but not warm conditions. Furthermore, these behaviors are mediated by a Xi to nucleus accumbens projection. Our results establish Xi as a key region for controlling cold-induced feeding, an important mechanism for maintaining energy homeostasis in endothermic animals.

9.
Mol Neuropsychiatry ; 5(2): 115-124, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31192224

RESUMEN

Bipolar disorder (BD) is characterized by recurrent mood episodes, and circadian rhythm disturbances. Past studies have identified calcium channel genes as risk loci for BD. CACNA1C encodes an L-type calcium channel (LTCC) involved in the entrainment of circadian rhythms to light. Another calcium channel, i.e., the ryanodine receptor (RYR), is involved in -circadian phase delays. It is unknown whether variants in CACNA1C or other calcium channels contribute to the circadian phenotype in BD. We hypothesized that, by using temperature cycles, we could model circadian entrainment in fibroblasts from BD patients and controls to interrogate the circadian functions of LTCCs. Using Per2-luc, a bioluminescent reporter, we verified that cells entrain to temperature rhythms in vitro. Under constant temperature conditions, the LTCC antagonist verapamil shortened the circadian period, and the RYR antagonist dantrolene lengthened the period. However, neither drug affected temperature entrainment. Fibroblasts from BD patients and controls also entrained to temperature. In cells from BD patients, the rhythm amplitude was lower under entrained, but not constant, conditions. Temperature entrainment was otherwise similar between BD and control cells. However, the CACNA1C genotype among BD cells predicted the degree to which cells entrained. We conclude that assessment of rhythms under entrained conditions reveals additional rhythm abnormalities in BD that are not observable under constant temperature conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA