Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cancer Ther ; 22(4): 519-528, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36752776

RESUMEN

Extra copies of centrosomes are frequently observed in cancer cells. To survive and proliferate, cancer cells have developed strategies to cluster extra-centrosomes to form bipolar mitotic spindles. The aim of this study was to investigate whether centrosome clustering (CC) inhibition (CCi) would preferentially radiosensitize non-small cell lung cancer (NSCLC). Griseofulvin (GF; FDA-approved treatment) inhibits CC, and combined with radiation treatment (RT), resulted in a significant increase in the number of NSCLC cells with multipolar spindles, and decreased cell viability and colony formation ability in vitro. In vivo, GF treatment was well tolerated by mice, and the combined therapy of GF and radiation treatment resulted in a significant tumor growth delay. Both GF and radiation treatment also induced the generation of micronuclei (MN) in vitro and in vivo and activated cyclic GMP-AMP synthase (cGAS) in NSCLC cells. A significant increase in downstream cGAS-STING pathway activation was seen after combination treatment in A549 radioresistant cells that was dependent on cGAS. In conclusion, GF increased radiation treatment efficacy in lung cancer preclinical models in vitro and in vivo. This effect may be associated with the generation of MN and the activation of cGAS. These data suggest that the combination therapy of CCi, radiation treatment, and immunotherapy could be a promising strategy to treat NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Griseofulvina/farmacología , Griseofulvina/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/patología , Centrosoma , Nucleotidiltransferasas
2.
Prostate Cancer Prostatic Dis ; 21(1): 126-136, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29556048

RESUMEN

BACKGROUND: Prostate cancer remains the second leading cause of cancer related death in men. Immune check point blocking antibodies have revolutionized treatment of multiple solid tumors, but results in prostate cancer remain marginal. Previous reports have suggested that local therapies, in particular cryoablation might increase tumor immunogenicity. In this work, we examine potential synergism between tumor cryoabalation and check point blocking antibodies. METHODS: FVB/NJ mice were injected subcutaneously into each flank with either 1 × 106 or 0.2 × 106 isogenic hormone sensitive Myc-Cap cells to establish synchronous grafts. Mice were treated with four intraperitoneal injections of anti-PD-1 (10 mg/kg), anti-CTLA-4 (1 mg/kg), or isotype control antibody with or without adjuvant cryoablation of the larger tumor graft and with or without neo-adjuvant androgen deprivation with degarelix (ADT). Mouse survival and growth rates of tumor grafts were measured. The immune dependency of observed oncological effects was evaluated by T cell depletion experiments. RESULTS: Treatment with anti-CTLA-4 antibody and cryoablation delayed the growth of the distant tumor by 14.8 days (p = 0.0006) and decreased the mortality rate by factor of 4 (p = 0.0003) when compared to cryoablation alone. This synergy was found to be dependent on CD3+ and CD8+ cells. Combining PD-1 blockade with cryoablation did not show a benefit over use of either treatment alone. Addition of ADT to anti-PD1 therapy and cryoablation doubled the time to accelerated growth in the untreated tumors (p = 0.0021) and extended survival when compared to cryoablation combined with ADT in 25% of the mice. Effects of combining anti-PD1 with ADT and cryoablation on mouse survival were obviated by T cell depletion. CONCLUSION: Trimodal therapy consisting of androgen deprivation, cryoablation and PD-1 blockade, as well as the combination of cryoablation and low dose anti-CTLA-4 blockade showed that local therapies with cryoablation could be considered to augment the effects of checkpoint blockade in prostate cancer.


Asunto(s)
Antígeno CTLA-4/uso terapéutico , Neoplasias Hormono-Dependientes/inmunología , Neoplasias Hormono-Dependientes/terapia , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/terapia , Animales , Linfocitos T CD8-positivos/inmunología , Antígeno CTLA-4/inmunología , Línea Celular Tumoral , Terapia Combinada , Criocirugía/métodos , Modelos Animales de Enfermedad , Humanos , Inmunoterapia/métodos , Estimación de Kaplan-Meier , Masculino , Ratones , Neoplasias Hormono-Dependientes/patología , Neoplasias Hormono-Dependientes/cirugía , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía
3.
J Clin Invest ; 128(9): 3926-3940, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-29952768

RESUMEN

DNA-damaging chemotherapy and radiation therapy are integrated into the treatment paradigm of the majority of cancer patients. Recently, immunotherapy that targets the immunosuppressive interaction between programmed death 1 (PD-1) and its ligand PD-L1 has been approved for malignancies including non-small cell lung cancer, melanoma, and head and neck squamous cell carcinoma. ATR is a DNA damage-signaling kinase activated at damaged replication forks, and ATR kinase inhibitors potentiate the cytotoxicity of DNA-damaging chemotherapies. We show here that the ATR kinase inhibitor AZD6738 combines with conformal radiation therapy to attenuate radiation-induced CD8+ T cell exhaustion and potentiate CD8+ T cell activity in mouse models of Kras-mutant cancer. Mechanistically, AZD6738 blocks radiation-induced PD-L1 upregulation on tumor cells and dramatically decreases the number of tumor-infiltrating Tregs. Remarkably, AZD6738 combines with conformal radiation therapy to generate immunologic memory in complete responder mice. Our work raises the possibility that a single pharmacologic agent may enhance the cytotoxic effects of radiation while concurrently potentiating radiation-induced antitumor immune responses.


Asunto(s)
Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de la radiación , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/radioterapia , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Sulfóxidos/farmacología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/radioterapia , Animales , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Quimioradioterapia , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/radioterapia , Humanos , Indoles , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/efectos de la radiación , Ratones , Ratones Endogámicos BALB C , Morfolinas , Neoplasias Experimentales/inmunología , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas Proto-Oncogénicas p21(ras)/genética , Pirimidinas/farmacocinética , Radioterapia Conformacional , Sulfonamidas , Sulfóxidos/farmacocinética
4.
J Clin Invest ; 128(11): 4924-4937, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30130254

RESUMEN

Mutant KRAS drives glycolytic flux in lung cancer, potentially impacting aberrant protein glycosylation. Recent evidence suggests aberrant KRAS drives flux of glucose into the hexosamine biosynthetic pathway (HBP). HBP is required for various glycosylation processes, such as protein N- or O-glycosylation and glycolipid synthesis. However, its function during tumorigenesis is poorly understood. One contributor and proposed target of KRAS-driven cancers is a developmentally conserved epithelial plasticity program called epithelial-mesenchymal transition (EMT). Here we showed in novel autochthonous mouse models that EMT accelerated KrasG12D lung tumorigenesis by upregulating expression of key enzymes of the HBP pathway. We demonstrated that HBP was required for suppressing KrasG12D-induced senescence, and targeting HBP significantly delayed KrasG12D lung tumorigenesis. To explore the mechanism, we investigated protein glycosylation downstream of HBP and found elevated levels of O-linked ß-N-acetylglucosamine (O-GlcNAcylation) posttranslational modification on intracellular proteins. O-GlcNAcylation suppressed KrasG12D oncogene-induced senescence (OIS) and accelerated lung tumorigenesis. Conversely, loss of O-GlcNAcylation delayed lung tumorigenesis. O-GlcNAcylation of proteins SNAI1 and c-MYC correlated with the EMT-HBP axis and accelerated lung tumorigenesis. Our results demonstrated that O-GlcNAcylation was sufficient and required to accelerate KrasG12D lung tumorigenesis in vivo, which was reinforced by epithelial plasticity programs.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares/enzimología , Mutación Missense , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Células A549 , Acilación , Sustitución de Aminoácidos , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Femenino , Glucosa/genética , Glucosa/metabolismo , Células HEK293 , Hexosaminas/genética , Hexosaminas/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Ratones Transgénicos , Proteínas Proto-Oncogénicas p21(ras)/genética
5.
Mol Cancer Res ; 15(12): 1764-1776, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28851812

RESUMEN

TWIST1, an epithelial-mesenchymal transition (EMT) transcription factor, is critical for oncogene-driven non-small cell lung cancer (NSCLC) tumorigenesis. Given the potential of TWIST1 as a therapeutic target, a chemical-bioinformatic approach using connectivity mapping (CMAP) analysis was used to identify TWIST1 inhibitors. Characterization of the top ranked candidates from the unbiased screen revealed that harmine, a harmala alkaloid, inhibited multiple TWIST1 functions, including single-cell dissemination, suppression of normal branching in 3D epithelial culture, and proliferation of oncogene driver-defined NSCLC cells. Harmine treatment phenocopied genetic loss of TWIST1 by inducing oncogene-induced senescence or apoptosis. Mechanistic investigation revealed that harmine targeted the TWIST1 pathway through its promotion of TWIST1 protein degradation. As dimerization is critical for TWIST1 function and stability, the effect of harmine on specific TWIST1 dimers was examined. TWIST1 and its dimer partners, the E2A proteins, which were found to be required for TWIST1-mediated functions, regulated the stability of the other heterodimeric partner posttranslationally. Harmine preferentially promoted degradation of the TWIST1-E2A heterodimer compared with the TWIST-TWIST1 homodimer, and targeting the TWIST1-E2A heterodimer was required for harmine cytotoxicity. Finally, harmine had activity in both transgenic and patient-derived xenograft mouse models of KRAS-mutant NSCLC. These studies identified harmine as a first-in-class TWIST1 inhibitor with marked anti-tumor activity in oncogene-driven NSCLC including EGFR mutant, KRAS mutant and MET altered NSCLC.Implications: TWIST1 is required for oncogene-driven NSCLC tumorigenesis and EMT; thus, harmine and its analogues/derivatives represent a novel therapeutic strategy to treat oncogene-driven NSCLC as well as other solid tumor malignancies. Mol Cancer Res; 15(12); 1764-76. ©2017 AACR.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Harmina/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Nucleares/genética , Proteína 1 Relacionada con Twist/genética , Células A549 , Animales , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Biología Computacional , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Transgénicos , Mutación , Multimerización de Proteína/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/genética
6.
Cancer Res ; 77(12): 3181-3193, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28484075

RESUMEN

TWIST1 is a transcription factor critical for development that can promote prostate cancer metastasis. During embryonic development, TWIST1 and HOXA9 are coexpressed in mouse prostate and then silenced postnatally. Here we report that TWIST1 and HOXA9 coexpression are reactivated in mouse and human primary prostate tumors and are further enriched in human metastases, correlating with survival. TWIST1 formed a complex with WDR5 and the lncRNA Hottip/HOTTIP, members of the MLL/COMPASS-like H3K4 methylases, which regulate chromatin in the Hox/HOX cluster during development. TWIST1 overexpression led to coenrichment of TWIST1 and WDR5 as well as increased H3K4me3 chromatin at the Hoxa9/HOXA9 promoter, which was dependent on WDR5. Expression of WDR5 and Hottip/HOTTIP was also required for TWIST1-induced upregulation of HOXA9 and aggressive cellular phenotypes such as invasion and migration. Pharmacologic inhibition of HOXA9 prevented TWIST1-induced aggressive prostate cancer cellular phenotypes in vitro and metastasis in vivo This study demonstrates a novel mechanism by which TWIST1 regulates chromatin and gene expression by cooperating with the COMPASS-like complex to increase H3K4 trimethylation at target gene promoters. Our findings highlight a TWIST1-HOXA9 embryonic prostate developmental program that is reactivated during prostate cancer metastasis and is therapeutically targetable. Cancer Res; 77(12); 3181-93. ©2017 AACR.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Homeodominio/metabolismo , Invasividad Neoplásica/genética , Proteínas Nucleares/metabolismo , Neoplasias de la Próstata/patología , ARN Largo no Codificante/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Cromatina , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica/genética , Técnicas de Inactivación de Genes , Xenoinjertos , N-Metiltransferasa de Histona-Lisina/genética , Proteínas de Homeodominio/genética , Humanos , Inmunohistoquímica , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Invasividad Neoplásica/patología , Proteínas Nucleares/genética , Reacción en Cadena de la Polimerasa , Neoplasias de la Próstata/genética , ARN Largo no Codificante/genética , Proteína 1 Relacionada con Twist/genética
7.
Radiat Res ; 186(6): 592-601, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27869556

RESUMEN

In response to the limitations of computed tomography (CT) and cone-beam CT (CBCT) in irradiation guidance, especially for soft-tissue targets without the use of contrast agents, our group developed a solution that implemented bioluminescence tomography (BLT) as the image-guidance modality for preclinical radiation research. However, adding such a system to existing small animal irradiators is no small task. A potential solution is to utilize an off-line BLT system in close proximity to the irradiator, with stable and effective animal transport between the two systems. In this study, we investigated the localization accuracy of an off-line BLT system when used for the small animal radiation research platform (SARRP) and compared the results with those of an on-line system. The CBCT was equipped on both the off-line BLT system and the SARRP, with a distance of 5 m between them. To evaluate the setup error during animal transport between the two systems, the mice underwent CBCT imaging on the SARRP and were then transported to the off-line system for a second CBCT imaging session. The normalized intensity difference of the two images and the corresponding histogram and correlation were computed to evaluate if the transport process perturbed animal positioning. Strong correlation (correlation coefficients >0.95) between the SARRP and the off-line mouse CBCT was observed. The offset of the implanted light source center can be maintained within 0.2 mm during transport. To compare the target localization accuracy using the on-line SARRP BLT and the off-line system, a self-illuminated bioluminescent source was implanted in the abdomen of anesthetized mice. In addition to the application for dose calculation, CBCT imaging was also employed to generate the mesh grid of the imaged mouse for BLT reconstruction. Two scenarios were devised and compared, which involved localization of the luminescence source based on either: 1. on-line SARRP bioluminescence image and CBCT; or 2. off-line bioluminescence image and SARRP CBCT. The first scenario is assumed to have the least setup error, because no animal transport was involved. The second scenario examines if an off-line BLT system, with the mesh generated from the SARRP CBCT, can be used to guide SARRP irradiation when there is minimal target contrast in CBCT. Stability during animal transport between the two systems was maintained. The center of mass (CoM) of the light source reconstructed by the off-line BLT had an offset of 1.0 ± 0.4 mm from the true CoM derived from the SARRP CBCT. These results are comparable to the offset of 1.0 ± 0.2 mm using on-line BLT. With CBCT information provided by the SARRP and effective animal immobilization during transport, these findings support the utilization of an off-line BLT-guided system, in close proximity to the SARRP, for accurate soft-tissue target localization. In addition, a dedicated standalone BLT system for our partner site at the University of Pennsylvania was introduced in this study.


Asunto(s)
Luminiscencia , Radioterapia Guiada por Imagen/instrumentación , Tomografía/instrumentación , Animales , Ratones , Fantasmas de Imagen
8.
Cancer Res ; 76(21): 6340-6350, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27634756

RESUMEN

Despite advances in diagnosis and treatment, prostate cancer is the most prevalent cancer in males and the second highest cause of cancer-related mortality. We identified an RNA helicase gene, DDX3 (DDX3X), which is overexpressed in prostate cancers, and whose expression is directly correlated with high Gleason scores. Knockdown of DDX3 in the aggressive prostate cancer cell lines DU145 and 22Rv1 resulted in significantly reduced clonogenicity. To target DDX3, we rationally designed a small molecule, RK-33, which docks into the ATP-binding domain of DDX3. Functional studies indicated that RK-33 preferentially bound to DDX3 and perturbed its activity. RK-33 treatment of prostate cancer cell lines DU145, 22Rv1, and LNCaP (which have high DDX3 levels) decreased proliferation and induced a G1 phase cell-cycle arrest. Conversely, the low DDX3-expressing cell line, PC3, exhibited few changes following RK-33 treatment. Importantly, combination studies using RK-33 and radiation exhibited synergistic effects both in vitro and in a xenograft model of prostate cancer demonstrating the role of RK-33 as a radiosensitizer. Taken together, these results indicate that blocking DDX3 by RK-33 in combination with radiation treatment is a viable option for treating locally advanced prostate cancer. Cancer Res; 76(21); 6340-50. ©2016 AACR.


Asunto(s)
Azepinas/farmacología , ARN Helicasas DEAD-box/antagonistas & inhibidores , Imidazoles/farmacología , Neoplasias de la Próstata/radioterapia , Fármacos Sensibilizantes a Radiaciones/farmacología , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , ARN Helicasas DEAD-box/análisis , ARN Helicasas DEAD-box/fisiología , Daño del ADN , Histonas/análisis , Humanos , Masculino , Ratones , Neoplasias de la Próstata/química , Neoplasias de la Próstata/patología
9.
Cancer Biol Ther ; 17(4): 457-66, 2016 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-26980196

RESUMEN

Therapies for liver cancer particularly those including radiation are still inadequate. Inhibiting the stress response machinery is an appealing anti-cancer and radiosensitizing therapeutic strategy. Heat-shock-protein-90 (HSP90) is a molecular chaperone that is a prominent effector of the stress response machinery and is overexpressed in liver cancer cells. HSP90 client proteins include critical components of pathways implicated in liver cancer cell survival and radioresistance. The effects of a novel non-geldanamycin HSP90 inhibitor, ganetespib, combined with radiation were examined on 3 liver cancer cell lines, Hep3b, HepG2 and HUH7, using in vitro assays for clonogenic survival, apoptosis, cell cycle distribution, γH2AX foci kinetics and client protein expression in pathways important for liver cancer survival and radioresistance. We then evaluated tumor growth delay and effects of the combined ganetespib-radiation treatment on tumor cell proliferation in a HepG2 hind-flank tumor graft model. Nanomolar levels of ganetespib alone exhibited liver cancer cell anti-cancer activity in vitro as shown by decreased clonogenic survival that was associated with increased apoptotic cell death, prominent G2-M arrest and marked changes in PI3K/AKT/mTOR and RAS/MAPK client protein activity. Ganetespib caused a supra-additive radiosensitization in all liver cancer cell lines at low nanomolar doses with enhancement ratios between 1.33-1.78. These results were confirmed in vivo, where the ganetespib-radiation combination therapy produced supra-additive tumor growth delay compared with either therapy by itself in HepG2 tumor grafts. Our data suggest that combined ganetespib-radiation therapy exhibits promising activity against liver cancer cells, which should be investigated in clinical studies.


Asunto(s)
Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/radioterapia , Fármacos Sensibilizantes a Radiaciones/farmacología , Triazoles/uso terapéutico , Proliferación Celular , Humanos , Neoplasias Hepáticas/patología , Transducción de Señal , Triazoles/administración & dosificación , Triazoles/farmacología
10.
Neoplasia ; 17(1): 16-31, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25622896

RESUMEN

The TWIST1 gene has diverse roles in development and pathologic diseases such as cancer. TWIST1 is a dimeric basic helix-loop-helix (bHLH) transcription factor existing as TWIST1-TWIST1 or TWIST1-E12/47. TWIST1 partner choice and DNA binding can be influenced during development by phosphorylation of Thr125 and Ser127 of the Thr-Gln-Ser (TQS) motif within the bHLH of TWIST1. The significance of these TWIST1 phosphorylation sites for metastasis is unknown. We created stable isogenic prostate cancer cell lines overexpressing TWIST1 wild-type, phospho-mutants, and tethered versions. We assessed these isogenic lines using assays that mimic stages of cancer metastasis. In vitro assays suggested the phospho-mimetic Twist1-DQD mutation could confer cellular properties associated with pro-metastatic behavior. The hypo-phosphorylation mimic Twist1-AQA mutation displayed reduced pro-metastatic activity compared to wild-type TWIST1 in vitro, suggesting that phosphorylation of the TWIST1 TQS motif was necessary for pro-metastatic functions. In vivo analysis demonstrates that the Twist1-AQA mutation exhibits reduced capacity to contribute to metastasis, whereas the expression of the Twist1-DQD mutation exhibits proficient metastatic potential. Tethered TWIST1-E12 heterodimers phenocopied the Twist1-DQD mutation for many in vitro assays, suggesting that TWIST1 phosphorylation may result in heterodimerization in prostate cancer cells. Lastly, the dual phosphatidylinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) inhibitor BEZ235 strongly attenuated TWIST1-induced migration that was dependent on the TQS motif. TWIST1 TQS phosphorylation state determines the intensity of TWIST1-induced pro-metastatic ability in prostate cancer cells, which may be partly explained mechanistically by TWIST1 dimeric partner choice.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias de la Próstata/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteína 1 Relacionada con Twist/metabolismo , Secuencias de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Análisis por Conglomerados , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica , Xenoinjertos , Humanos , Masculino , Mutación , Metástasis de la Neoplasia , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Inhibidores de Proteínas Quinasas/farmacología , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR/metabolismo , Transcriptoma , Proteína 1 Relacionada con Twist/química , Proteína 1 Relacionada con Twist/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA