Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nucleic Acids Res ; 50(7): 3601-3615, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-34568951

RESUMEN

Genomic DNA replication requires replisome assembly. We show here the molecular mechanism by which CMG (GAN-MCM-GINS)-like helicase cooperates with the family D DNA polymerase (PolD) in Thermococcus kodakarensis. The archaeal GINS contains two Gins51 subunits, the C-terminal domain of which (Gins51C) interacts with GAN. We discovered that Gins51C also interacts with the N-terminal domain of PolD's DP1 subunit (DP1N) to connect two PolDs in GINS. The two replicases in the replisome should be responsible for leading- and lagging-strand synthesis, respectively. Crystal structure analysis of the DP1N-Gins51C-GAN ternary complex was provided to understand the structural basis of the connection between the helicase and DNA polymerase. Site-directed mutagenesis analysis supported the interaction mode obtained from the crystal structure. Furthermore, the assembly of helicase and replicase identified in this study is also conserved in Eukarya. PolD enhances the parental strand unwinding via stimulation of ATPase activity of the CMG-complex. This is the first evidence of the functional connection between replicase and helicase in Archaea. These results suggest that the direct interaction of PolD with CMG-helicase is critical for synchronizing strand unwinding and nascent strand synthesis and possibly provide a functional machinery for the effective progression of the replication fork.


Asunto(s)
ADN Helicasas , ADN Polimerasa Dirigida por ADN , Thermococcus , ADN Helicasas/genética , ADN Helicasas/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , Eucariontes/metabolismo , Thermococcus/enzimología , Thermococcus/metabolismo
2.
Mol Cell ; 58(3): 418-30, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25921071

RESUMEN

In prokaryotes, Clustered regularly interspaced short palindromic repeat (CRISPR)-derived RNAs (crRNAs), together with CRISPR-associated (Cas) proteins, capture and degrade invading genetic materials. In the type III-B CRISPR-Cas system, six Cas proteins (Cmr1-Cmr6) and a crRNA form an RNA silencing Cmr complex. Here we report the 2.1 Å crystal structure of the Cmr1-deficient, functional Cmr complex bound to single-stranded DNA, a substrate analog complementary to the crRNA guide. Cmr3 recognizes the crRNA 5' tag and defines the start position of the guide-target duplex, using its idiosyncratic loops. The ß-hairpins of three Cmr4 subunits intercalate within the duplex, causing nucleotide displacements with 6 nt intervals, and thus periodically placing the scissile bonds near the crucial aspartate of Cmr4. The structure reveals the mechanism for specifying the periodic target cleavage sites from the crRNA 5' tag and provides insights into the assembly of the type III interference machineries and the evolution of the Cmr and Cascade complexes.


Asunto(s)
Proteínas Arqueales/química , Proteínas Asociadas a CRISPR/química , Interferencia de ARN , ARN de Archaea/química , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Archaeoglobus fulgidus/genética , Archaeoglobus fulgidus/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , ARN de Archaea/genética , ARN de Archaea/metabolismo , Homología de Secuencia de Aminoácido
3.
Nucleic Acids Res ; 49(8): 4599-4612, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33849056

RESUMEN

The eukaryotic replisome is comprised of three family-B DNA polymerases (Polα, δ and ϵ). Polα forms a stable complex with primase to synthesize short RNA-DNA primers, which are subsequently elongated by Polδ and Polϵ in concert with proliferating cell nuclear antigen (PCNA). In some species of archaea, family-D DNA polymerase (PolD) is the only DNA polymerase essential for cell viability, raising the question of how it alone conducts the bulk of DNA synthesis. We used a hyperthermophilic archaeon, Thermococcus kodakarensis, to demonstrate that PolD connects primase to the archaeal replisome before interacting with PCNA. Whereas PolD stably connects primase to GINS, a component of CMG helicase, cryo-EM analysis indicated a highly flexible PolD-primase complex. A conserved hydrophobic motif at the C-terminus of the DP2 subunit of PolD, a PIP (PCNA-Interacting Peptide) motif, was critical for the interaction with primase. The dissociation of primase was induced by DNA-dependent binding of PCNA to PolD. Point mutations in the alternative PIP-motif of DP2 abrogated the molecular switching that converts the archaeal replicase from de novo to processive synthesis mode.


Asunto(s)
Proteínas Arqueales/metabolismo , ADN Helicasas/metabolismo , ADN Polimerasa III/metabolismo , ADN Primasa/química , Antígeno Nuclear de Célula en Proliferación/metabolismo , Thermococcus/metabolismo , Secuencias de Aminoácidos , Proteínas Arqueales/química , Cromatografía en Gel , ADN Helicasas/genética , ADN Polimerasa III/química , ADN Primasa/genética , ADN Primasa/metabolismo , Escherichia coli/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Mutagénesis Sitio-Dirigida , Electroforesis en Gel de Poliacrilamida Nativa , Antígeno Nuclear de Célula en Proliferación/genética , Unión Proteica , Proteínas Recombinantes , Resonancia por Plasmón de Superficie , Thermococcus/genética
4.
J Biol Chem ; 297(3): 101028, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34339732

RESUMEN

Ribonuclease P (RNase P) is an endoribonuclease that catalyzes the processing of the 5' leader sequence of precursor tRNA (pre-tRNA). Ribonucleoprotein RNase P and protein-only RNase P (PRORP) in eukaryotes have been extensively studied, but the mechanism by which a prokaryotic nuclease recognizes and cleaves pre-tRNA is unclear. To gain insights into this mechanism, we studied homologs of Aquifex RNase P (HARPs), thought to be enzymes of approximately 23 kDa comprising only this nuclease domain. We determined the cryo-EM structure of Aq880, the first identified HARP enzyme. The structure unexpectedly revealed that Aq880 consists of both the nuclease and protruding helical (PrH) domains. Aq880 monomers assemble into a dimer via the PrH domain. Six dimers form a dodecamer with a left-handed one-turn superhelical structure. The structure also revealed that the active site of Aq880 is analogous to that of eukaryotic PRORPs. The pre-tRNA docking model demonstrated that 5' processing of pre-tRNAs is achieved by two adjacent dimers within the dodecamer. One dimer is responsible for catalysis, and the PrH domains of the other dimer are responsible for pre-tRNA elbow recognition. Our study suggests that HARPs measure an invariant distance from the pre-tRNA elbow to cleave the 5' leader sequence, which is analogous to the mechanism of eukaryotic PRORPs and the ribonucleoprotein RNase P. Collectively, these findings shed light on how different types of RNase P enzymes utilize the same pre-tRNA processing.


Asunto(s)
Precursores del ARN/metabolismo , ARN de Transferencia/metabolismo , Ribonucleasa P/química , Secuencia de Aminoácidos , Catálisis , Dominio Catalítico , Microscopía por Crioelectrón , Dimerización , Simulación del Acoplamiento Molecular , Ribonucleasa P/metabolismo , Homología de Secuencia de Aminoácido
5.
Glycobiology ; 32(4): 356-364, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-34939106

RESUMEN

Plant GH19 chitinases have several loop structures, which may define their enzymatic properties. Among these loops, the longest loop, Loop-III, is most frequently conserved in GH19 enzymes. A GH19 chitinase from the moss Bryum coronatum (BcChi-A) has only one loop structure, Loop-III, which is connected to the catalytically important ß-sheet region. Here, we produced and characterized a Loop-III-deleted mutant of BcChi-A (BcChi-A-ΔIII) and found that its stability and chitinase activity were strongly reduced. The deletion of Loop-III also moderately affected the chitooligosaccharide binding ability as well as the binding mode to the substrate-binding groove. The crystal structure of an inactive mutant of BcChi-A-ΔIII was successfully solved, revealing that the remaining polypeptide chain has an almost identical fold to that of the original protein. Loop-III is not necessarily essential for the folding of the enzyme protein. However, closer examination of the crystal structure revealed that the deletion of Loop-III altered the arrangement of the catalytic triad, Glu61, Glu70 and Ser102, and the orientation of the Trp103 side chain, which is important for sugar residue binding. We concluded that Loop-III is not directly involved in the enzymatic activity but assists the enzyme function by stabilizing the conformation of the ß-sheet region and the adjacent substrate-binding platform from behind the core-functional regions.


Asunto(s)
Briófitas , Bryopsida , Quitinasas , Briófitas/metabolismo , Bryopsida/metabolismo , Quitina/química , Quitinasas/química , Conformación Proteica en Lámina beta
6.
Nucleic Acids Res ; 46(4): 1565-1583, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29390138

RESUMEN

Modified uridine containing taurine, 5-taurinomethyluridine (τm5U), is found at the anticodon first position of mitochondrial (mt-)transfer RNAs (tRNAs). Previously, we reported that τm5U is absent in mt-tRNAs with pathogenic mutations associated with mitochondrial diseases. However, biogenesis and physiological role of τm5U remained elusive. Here, we elucidated τm5U biogenesis by confirming that 5,10-methylene-tetrahydrofolate and taurine are metabolic substrates for τm5U formation catalyzed by MTO1 and GTPBP3. GTPBP3-knockout cells exhibited respiratory defects and reduced mitochondrial translation. Very little τm5U34 was detected in patient's cells with the GTPBP3 mutation, demonstrating that lack of τm5U results in pathological consequences. Taurine starvation resulted in downregulation of τm5U frequency in cultured cells and animal tissues (cat liver and flatfish). Strikingly, 5-carboxymethylaminomethyluridine (cmnm5U), in which the taurine moiety of τm5U is replaced with glycine, was detected in mt-tRNAs from taurine-depleted cells. These results indicate that tRNA modifications are dynamically regulated via sensing of intracellular metabolites under physiological condition.


Asunto(s)
ARN de Transferencia/metabolismo , Taurina/deficiencia , Uridina/análogos & derivados , Animales , Proteínas Portadoras/fisiología , Gatos , Preescolar , Femenino , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/fisiología , Células HEK293 , Células HeLa , Humanos , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , ARN de Transferencia/química , Proteínas de Unión al ARN , Uridina/biosíntesis
7.
Plant Mol Biol ; 93(1-2): 97-108, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27807643

RESUMEN

KEY MESSAGE: The chitinase-mediated defense system in higher plants has been intensively studied from physiological and structural viewpoints. However, the defense system in the most primitive plant species, such as green algae, has not yet been elucidated in details. In this study, we solved the crystal structure of a family CBM-50 LysM module attached to the N-terminus of chitinase from Volvox carteri, and successfully analyzed its chitin-binding ability by NMR spectroscopy and isothermal titration calorimetry. Trp96 of the LysM module appeared to make a CH-π stacking interaction with the reducing end sugar residue of the ligand. We believe the data included in this manuscript provide novel insights into the molecular basis of chitinase-mediated defense system in green algae. A chitinase from the multicellular green alga, Volvox carteri, contains two N-terminal lysin motifs (VcLysM1 and VcLysM2), that belong to the CBM-50 family, in addition to a catalytic domain. We produced a recombinant protein of VcLysM2 in order to examine its structure and function. The X-ray crystal structure of VcLysM2 was successfully solved at a resolution of 1.2 Å, and revealed that the protein adopts the ßααß fold typical of members belonging to the CBM-50 family. NMR spectra of 13C- and 15N-labeled proteins were analyzed in order to completely assign the main chain resonances of the 1H,15N-HSQC spectrum in a sequential manner. NMR-based titration experiments of chitin oligosaccharides, (GlcNAc)n (n = 3-6), revealed the ligand-binding site of VcLysM2, in which the Trp96 side chain appeared to interact with the terminal GlcNAc residue of the ligand. We then mutated Trp96 to alanine (VcLysM2-W96A), and the mutant protein was characterized. Based on isothermal titration calorimetry, the affinity of (GlcNAc)6 toward VcLysM2 (-6.9 kcal/mol) was found to be markedly higher than that of (GlcNAc)3 (-4.1 kcal/mol), whereas the difference in affinities between (GlcNAc)6 and (GlcNAc)3 in VcLysM2-W96A (-5.1 and -4.0 kcal/mol, respectively) was only moderate. This suggests that the Trp96 side chain of VcLysM2 interacts with the sugar residue of (GlcNAc)6 not with (GlcNAc)3. VcLysM2 appears to preferentially bind (GlcNAc)n with longer chains and plays a major role in the degradation of the chitinous components of enzyme targets.


Asunto(s)
Quitinasas/química , Proteínas de Plantas/química , Volvox/enzimología , Secuencias de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Proteínas Recombinantes de Fusión/química , Análisis de Secuencia de Proteína
8.
Biochem Biophys Res Commun ; 494(3-4): 736-741, 2017 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-28867184

RESUMEN

We determined the crystal structure of a LysM module from Pteris ryukyuensis chitinase-A (PrLysM2) at a resolution of 1.8 Å. Structural and binding analysis of PrLysM2 indicated that this module recognizes chitin oligosaccharides in a shallow groove comprised of five sugar-binding subsites on one side of the molecule. The free energy changes (ΔGr°) for binding of (GlcNAc)6, (GlcNAc)5, and (GlcNAc)4 to PrLysM2 were determined to be -5.4, -5,4 and -4.6 kcal mol-1, respectively, by ITC. Thermodynamic dissection of the binding energetics of (GlcNAc)6 revealed that the driving force is the enthalpy change (ΔHr° = -11.7 ± 0.2 kcal/mol) and the solvation entropy change (-TΔSsolv° = -5.9 ± 0.6 kcal/mol). This is the first description of thermodynamic signatures of a chitin oligosaccharide binding to a LysM module.


Asunto(s)
Quitina/química , Quitina/ultraestructura , Quitinasas/química , Quitinasas/ultraestructura , Oligosacáridos/química , Oligosacáridos/ultraestructura , Pteris/enzimología , Sitios de Unión , Lisina/química , Modelos Químicos , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Termodinámica
9.
Biochem J ; 473(8): 1085-95, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26936968

RESUMEN

An antifungal chitosanase/glucanase isolated from the soil bacterium Paenibacillus sp. IK-5 has two CBM32 chitosan-binding modules (DD1 and DD2) linked in tandem at the C-terminus. In order to obtain insights into the mechanism of chitosan recognition, the structures of DD1 and DD2 were solved by NMR spectroscopy and crystallography. DD1 and DD2 both adopted a ß-sandwich fold with several loops in solution as well as in crystals. On the basis of chemical shift perturbations in(1)H-(15)N-HSQC resonances, the chitosan tetramer (GlcN)4 was found to bind to the loop region extruded from the core ß-sandwich of DD1 and DD2. The binding site defined by NMR in solution was consistent with the crystal structure of DD2 in complex with (GlcN)3, in which the bound (GlcN)3 stood upright on its non-reducing end at the binding site. Glu(14)of DD2 appeared to make an electrostatic interaction with the amino group of the non-reducing end GlcN, and Arg(31), Tyr(36)and Glu(61)formed several hydrogen bonds predominantly with the non-reducing end GlcN. No interaction was detected with the reducing end GlcN. Since Tyr(36)of DD2 is replaced by glutamic acid in DD1, the mutation of Tyr(36)to glutamic acid was conducted in DD2 (DD2-Y36E), and the reverse mutation was conducted in DD1 (DD1-E36Y). Ligand-binding experiments using the mutant proteins revealed that this substitution of the 36th amino acid differentiates the binding properties of DD1 and DD2, probably enhancing total affinity of the chitosanase/glucanase toward the fungal cell wall.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quitosano/metabolismo , Glicósido Hidrolasas/metabolismo , Paenibacillus , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/fisiología , Quitosano/química , Cristalografía por Rayos X , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Especificidad por Sustrato/fisiología
10.
Plant J ; 82(1): 54-66, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25652217

RESUMEN

A class V (glycoside hydrolase family 18) chitinase from the cycad Cycas revoluta (CrChiA) is a plant chitinase that has been reported to possess efficient transglycosylation (TG) activity. We solved the crystal structure of CrChiA, and compared it with those of class V chitinases from Nicotiana tabacum (NtChiV) and Arabidopsis thaliana (AtChiC), which do not efficiently catalyze the TG reaction. All three chitinases had a similar (α/ß)8 barrel fold with an (α + ß) insertion domain. In the acceptor binding site (+1, +2 and +3) of CrChiA, the Trp168 side chain was found to stack face-to-face with the +3 sugar. However, this interaction was not found in the identical regions of NtChiV and AtChiC. In the DxDxE motif, which is essential for catalysis, the carboxyl group of the middle Asp (Asp117) was always oriented toward the catalytic acid Glu119 in CrChiA, whereas the corresponding Asp in NtChiV and AtChiC was oriented toward the first Asp. These structural features of CrChiA appear to be responsible for the efficient TG activity. When binding of the inhibitor allosamidin was evaluated using isothermal titration calorimetry, the changes in binding free energy of the three chitinases were found to be similar to each other, i.e. between -9.5 and -9.8 kcal mol(-1) . However, solvation and conformational entropy changes in CrChiA were markedly different from those in NtChiV and AtChiC, but similar to those of chitinase A from Serratia marcescens (SmChiA), which also exhibits significant TG activity. These results provide insight into the molecular mechanism underlying the TG reaction and the molecular evolution from bacterial chitinases to plant class V chitinases.


Asunto(s)
Acetilglucosamina/análogos & derivados , Quitinasas/química , Cycas/enzimología , Inhibidores Enzimáticos/metabolismo , Trisacáridos/metabolismo , Acetilglucosamina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Quitina/metabolismo , Quitinasas/antagonistas & inhibidores , Quitinasas/genética , Cristalografía por Rayos X , Evolución Molecular , Glicosilación , Datos de Secuencia Molecular , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alineación de Secuencia , Serratia/enzimología , Temperatura , Nicotiana/enzimología
11.
Biochim Biophys Acta ; 1844(4): 793-802, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24582745

RESUMEN

DESCRIPTIONS: The structure of a GH19 chitinase from the moss Bryum coronatum (BcChi-A) in complex with the substrate was examined by X-ray crystallography and NMR spectroscopy in solution. The X-ray crystal structure of the inactive mutant of BcChi-A (BcChi-A-E61A) liganded with chitin tetramer (GlcNAc)4 revealed a clear electron density of the tetramer bound to subsites -2, -1, +1, and +2. Individual sugar residues were recognized by several amino acids at these subsites through a number of hydrogen bonds. This is the first crystal structure of GH19 chitinase liganded with oligosaccharide spanning the catalytic center. NMR titration experiments of chitin oligosaccharides into the BcChi-A-E61A solution showed that the binding mode observed in the crystal structure is similar to that in solution. The C-1 carbon of -1 GlcNAc, the Oε1 atom of the catalytic base (Glu70), and the Oγ atom of Ser102 form a "triangle" surrounding the catalytic water, and the arrangement structurally validated the proposed catalytic mechanism of GH19 chitinases. The glycosidic linkage between -1 and +1 sugars was found to be twisted and under strain. This situation may contribute to the reduction of activation energy for hydrolysis. The complex structure revealed a more refined mechanism of the chitinase catalysis.


Asunto(s)
Bryopsida/química , Quitina/química , Quitinasas/química , Modelos Moleculares , Proteínas de Plantas/química , Bryopsida/enzimología , Bryopsida/genética , Dominio Catalítico , Quitina/metabolismo , Quitinasas/genética , Quitinasas/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Enlace de Hidrógeno , Hidrólisis , Espectroscopía de Resonancia Magnética , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Termodinámica
12.
Planta ; 242(4): 895-907, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25998529

RESUMEN

MAIN CONCLUSION: We first solved the crystal structure of class III catalytic domain of a chitinase from fern (PrChiA-cat), and found a structural difference between PrChiA-cat and hevamine. PrChiA-cat was found to have reduced affinities to chitin oligosaccharides and allosamidin. Plant class III chitinases are subdivided into enzymes with three disulfide bonds and those without disulfide bonds. We here referred to the former enzymes as class IIIa chitinases and the latter as class IIIb chitinases. In this study, we solved the crystal structure of the class IIIb catalytic domain of a chitinase from the fern Pteris ryukyuensis (PrChiA-cat), and compared it with that of hevamine, a class IIIa chitinase from Hevea brasiliensis. PrChiA-cat was found to adopt an (α/ß)8 fold typical of GH18 chitinases in a similar manner to that of hevamine. However, PrChiA-cat also had two large loops that extruded from the catalytic site, and the corresponding loops in hevamine were markedly smaller than those of PrChiA-cat. An HPLC analysis of the enzymatic products revealed that the mode of action of PrChiA-cat toward chitin oligosaccharides, (GlcNAc) n (n = 4-6), differed from those of hevamine and the other class IIIa chitinases. The binding affinities of (GlcNAc)3 and (GlcNAc)4 toward the inactive mutant of PrChiA-cat were determined by isothermal titration calorimetry, and were markedly lower than those toward other members of the GH18 family. The affinity and the inhibitory activity of allosamidin toward PrChiA-cat were also lower than those toward the GH18 chitinases investigated to date. Several hydrogen bonds found in the crystal structure of hevamine-allosamidin complex were missing in the modeled structure of PrChiA-cat-allosamidin complex. The structural findings for PrChiA-cat successfully interpreted the functional data presented.


Asunto(s)
Quitinasas/metabolismo , Disulfuros/química , Pteris/enzimología , Secuencia de Aminoácidos , Calorimetría , Quitinasas/antagonistas & inhibidores , Quitinasas/química , Cromatografía Líquida de Alta Presión , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido
13.
Biosci Biotechnol Biochem ; 79(3): 347-53, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25348586

RESUMEN

Bacteria and archaea have 2-lysylcytidine (L or lysidine) and 2-agmatinylcytidine (agm(2)C or agmatidine), respectively, at the first (wobble) position of the anticodon of the AUA codon-specific tRNA(Ile). These lysine- or agmatine-conjugated cytidine derivatives are crucial for the precise decoding of the genetic code. L is synthesized by tRNA(Ile)-lysidine synthetase (TilS), which uses l-lysine and ATP as substrates. Agm(2)C formation is catalyzed by tRNA(Ile)-agm(2)C synthetase (TiaS), which uses agmatine and ATP for the reaction. Despite the fact that TilS and TiaS synthesize structurally similar cytidine derivatives, these enzymes belong to non-related protein families. Therefore, these enzymes modify the wobble cytidine by distinct catalytic mechanisms, in which TilS activates the C2 carbon of the wobble cytidine by adenylation, while TiaS activates it by phosphorylation. In contrast, TilS and TiaS share similar tRNA recognition mechanisms, in which the enzymes recognize the tRNA acceptor stem to discriminate tRNA(Ile) and tRNA(Met).


Asunto(s)
Archaea/genética , Bacterias/genética , Codón/genética , Citidina/análogos & derivados , Lisina/análogos & derivados , Nucleósidos de Pirimidina/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , Archaea/metabolismo , Bacterias/metabolismo , Citidina/metabolismo , Lisina/metabolismo
14.
J Biol Chem ; 288(9): 6072-82, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23303182

RESUMEN

4-O-ß-Di-N-acetylchitobiosyl moranoline (2) and 4-O-ß-tri-N-acetylchitotriosyl moranoline (3) were produced by lysozyme-mediated transglycosylation from the substrates tetra-N-acetylchitotetraose, (GlcNAc)4, and moranoline, and the binding modes of 2 and 3 to hen egg white lysozyme (HEWL) was examined by inhibition kinetics, isothermal titration calorimetry (ITC), and x-ray crystallography. Compounds 2 and 3 specifically bound to HEWL, acting as competitive inhibitors with Ki values of 2.01 × 10(-5) and 1.84 × 10(-6) m, respectively. From ITC analysis, the binding of 3 was found to be driven by favorable enthalpy change (ΔHr°), which is similar to those obtained for 2 and (GlcNAc)4. However, the entropy loss (-TΔSr°) for the binding of 3 was smaller than those of 2 and (GlcNAc)4. Thus the binding of 3 was found to be more favorable than those of the others. Judging from the Kd value of 3 (760 nm), the compound appears to have the highest affinity among the lysozyme inhibitors identified to date. X-ray crystal structure of HEWL in a complex with 3 showed that compound 3 binds to subsites -4 to -1 and the moranoline moiety adopts an undistorted (4)C1 chair conformation almost overlapping with the -1 sugar covalently bound to Asp-52 of HEWL (Vocadlo, Davies, G. J., Laine, R., and Withers, S. G. (2001) Nature 412, 835-838). From these results, we concluded that compound 3 serves as a transition-state analogue for lysozyme providing additional evidence supporting the covalent glycosyl-enzyme intermediate in the catalytic reaction.


Asunto(s)
1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/química , Inhibidores Enzimáticos/química , Muramidasa/química , Animales , Catálisis , Pollos , Cristalografía por Rayos X , Muramidasa/antagonistas & inhibidores , Muramidasa/metabolismo , Unión Proteica , Estructura Terciaria de Proteína
15.
RNA Biol ; 11(12): 1586-96, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25629511

RESUMEN

Deciphering AUA codons is a difficult task for organisms, because AUA and AUG specify isoleucine (Ile) and methionine (Met), separately. Each of the other purine-ending sense co-don sets (NNR) specifies a single amino acid in the universal genetic code. In bacteria and archaea, the cytidine derivatives, 2-lysylcytidine (L or lysidine) and 2-agmatinylcytidine (agm(2)C or agmatidine), respectively, are found at the first letter of the anticodon of tRNA(Ile) responsible for AUA codons. These modifications prevent base pairing with G of the third letter of AUG codon, and enable tRNA(Ile) to decipher AUA codon specifically. In addition, these modifications confer a charging ability of tRNA(Ile) with Ile. Despite their similar chemical structures, L and agm(2)C are synthesized by distinctive mechanisms and catalyzed by different classes of enzymes, implying that the analogous decoding systems for AUA codons were established by convergent evolution after the phylogenic split between bacteria and archaea-eukaryotes lineages following divergence from the last universal common ancestor (LUCA).


Asunto(s)
Anticodón/metabolismo , Codón/metabolismo , Citidina/análogos & derivados , Código Genético , Lisina/análogos & derivados , Nucleósidos de Pirimidina/metabolismo , ARN de Transferencia/metabolismo , Anticodón/química , Archaea/clasificación , Archaea/genética , Archaea/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Evolución Biológica , Codón/química , Citidina/química , Citidina/genética , Citidina/metabolismo , Isoleucina/química , Isoleucina/genética , Isoleucina/metabolismo , Lisina/química , Lisina/genética , Lisina/metabolismo , Metionina/química , Metionina/genética , Metionina/metabolismo , Modelos Moleculares , Filogenia , Biosíntesis de Proteínas , Nucleósidos de Pirimidina/química , Nucleósidos de Pirimidina/genética , ARN de Transferencia/química , ARN de Transferencia/genética , Ribosomas/metabolismo
16.
bioRxiv ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38903087

RESUMEN

Riboswitches are structured RNA elements that regulate gene expression upon binding to small molecule ligands. Understanding the mechanisms by which small molecules impact riboswitch activity is key to developing potent, selective ligands for these and other RNA targets. We report the structure-informed design of chemically diverse synthetic ligands for PreQ1 riboswitches. Multiple X-ray co-crystal structures of synthetic ligands with the Thermoanaerobacter tengcongensis (Tte)-PreQ1 riboswitch confirm a common binding site with the cognate ligand, despite considerable chemical differences among the ligands. Structure probing assays demonstrate that one ligand causes conformational changes similar to PreQ1 in six structurally and mechanistically diverse PreQ1 riboswitch aptamers. Single-molecule force spectroscopy is used to demonstrate differential modes of riboswitch stabilization by the ligands. Binding of the natural ligand brings about the formation of a persistent, folded pseudoknot structure, whereas a synthetic ligand decreases the rate of unfolding through a kinetic mechanism. Single round transcription termination assays show the biochemical activity of the ligands, while a GFP reporter system reveals compound activity in regulating gene expression in live cells without toxicity. Taken together, this study reveals that diverse small molecules can impact gene expression in live cells by altering conformational changes in RNA structures through distinct mechanisms.

17.
EMBO J ; 28(21): 3353-65, 2009 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-19745807

RESUMEN

The CCA-adding enzyme synthesizes the CCA sequence at the 3' end of tRNA without a nucleic acid template. The crystal structures of class II Thermotoga maritima CCA-adding enzyme and its complexes with CTP or ATP were determined. The structure-based replacement of both the catalytic heads and nucleobase-interacting neck domains of the phylogenetically closely related Aquifex aeolicus A-adding enzyme by the corresponding domains of the T. maritima CCA-adding enzyme allowed the A-adding enzyme to add CCA in vivo and in vitro. However, the replacement of only the catalytic head domain did not allow the A-adding enzyme to add CCA, and the enzyme exhibited (A, C)-adding activity. We identified the region in the neck domain that prevents (A, C)-adding activity and defines the number of nucleotide incorporations and the specificity for correct CCA addition. We also identified the region in the head domain that defines the terminal A addition after CC addition. The results collectively suggest that, in the class II CCA-adding enzyme, the head and neck domains collaboratively and dynamically define the number of nucleotide additions and the specificity of nucleotide selection.


Asunto(s)
Adenosina Trifosfato/metabolismo , Citidina Trifosfato/metabolismo , ARN Nucleotidiltransferasas/química , ARN Nucleotidiltransferasas/metabolismo , Thermotoga maritima/enzimología , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Bacterias/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Citidina Trifosfato/química , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , ARN Nucleotidiltransferasas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-23695584

RESUMEN

Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci, found in prokaryotes, are transcribed to produce CRISPR RNAs (crRNAs). The Cmr proteins (Cmr1-6) and crRNA form a ribonucleoprotein complex that degrades target RNAs derived from invading genetic elements. Cmr2dHD, a Cmr2 variant lacking the N-terminal putative HD nuclease domain, and Cmr3 were co-expressed in Escherichia coli cells and co-purified as a complex. The Cmr2dHD-Cmr3 complex was co-crystallized with 3'-AMP by the vapour-diffusion method. The crystals diffracted to 2.6 Šresolution using synchrotron radiation at the Photon Factory. The crystals belonged to the orthorhombic space group I222, with unit-cell parameters a = 103.9, b = 136.7, c = 192.0 Å. The asymmetric unit of the crystals is expected to contain one Cmr2dHD-Cmr3 complex with a Matthews coefficient of 3.0 Å(3) Da(-1) and a solvent content of 59%.


Asunto(s)
Proteínas Bacterianas/química , Interferencia de ARN , Proteínas Bacterianas/genética , Cristalización , Variación Genética , Células Procariotas/fisiología , Interferencia de ARN/fisiología , Difracción de Rayos X
19.
Artículo en Inglés | MEDLINE | ID: mdl-24316830

RESUMEN

The catalytic mechanism of family GH19 chitinases is not well understood owing to insufficient information regarding the three-dimensional structures of enzyme-substrate complexes. Here, the crystallization and preliminary X-ray diffraction analysis of a selenomethionine-labelled active-site mutant of `loopless' family GH19 chitinase from the moss Bryum coronatum in complex with chitotetraose, (GlcNAc)4, are reported. The crystals were grown using the vapour-diffusion method. They diffracted to 1.58 Å resolution using synchrotron radiation at the Photon Factory. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 74.5, b = 58.4, c = 48.1 Å, ß = 115.6°. The asymmetric unit of the crystals is expected to contain one protein molecule, with a Matthews coefficient of 2.08 Å(3) Da(-1) and a solvent content of 41%.


Asunto(s)
Briófitas/química , Quitinasas/química , Oligosacáridos/química , Proteínas de Plantas/química , Briófitas/genética , Briófitas/metabolismo , Dominio Catalítico , Quitinasas/genética , Quitinasas/metabolismo , Cristalización , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Oligosacáridos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sincrotrones
20.
Plant Sci ; 326: 111524, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36328178

RESUMEN

Two rice GH18 chitinases, Oschib1 and Oschib2, belonging to family 8 of plant pathogenesis-related proteins (PR proteins) were expressed, purified, and characterized. These enzymes, which have the structural features of class IIIb chitinases, preferentially cleaved the second glycosidic linkage from the non-reducing end of substrate chitin oligosaccharides as opposed to rice class IIIa enzymes, OsChib3a and OsChib3b, which mainly cleaved the fourth linkage from the non-reducing end of chitin hexasaccharide [(GlcNAc)6]. Oschib1 and Oschiab2 inhibited the growth of Fusarium solani, but showed only a weak or no antifungal activity against Aspergillus niger and Trichoderma viride on the agar plates. Structural analysis of Oschib1 and Oschib2 revealed that these enzymes have two large loops extruded from the (ß/α)8 TIM-barrel fold, which are absent in the structures of class IIIa chitinases. The differences in the cleavage site preferences toward chitin oligosaccharides between plant class IIIa and IIIb chitinases are likely attributed to the additional loop structures found in the IIIb enzymes. The class IIIb chitinases, Oschib1 and Oschib2, seem to play important roles for the effective hydrolysis of chitin oligosaccharides released from the cell wall of the pathogenic fungi by the cooperative actions with the extracellular chitinases in rice.


Asunto(s)
Quitinasas , Oryza , Quitinasas/metabolismo , Oryza/genética , Oryza/metabolismo , Quitina/química , Quitina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oligosacáridos/metabolismo , Hidrólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA