Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Anesthesiol ; 23(1): 80, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927341

RESUMEN

BACKGROUND: Potassium channels (KCa3.1; Kv1.3; Kir2.1) are necessary for microglial activation, a pivotal requirement for the development of Perioperative Neurocognitive Disorders (PNDs). We previously reported on the role of microglial Kv1.3 for PNDs; the present study sought to determine whether inhibiting KCa3.1 channel activity affects neuroinflammation and prevents development of PND. METHODS: Mice (wild-type [WT] and KCa3.1-/-) underwent aseptic tibial fracture trauma under isoflurane anesthesia or received anesthesia alone. WT mice received either TRAM34 (a specific KCa3.1 channel inhibitor) dissolved in its vehicle (miglyol) or miglyol alone. Spatial memory was assessed in the Y-maze paradigm 6 h post-surgery/anesthesia. Circulating interleukin-6 (IL-6) and high mobility group box-1 protein (HMGB1) were assessed by ELISA, and microglial activitation Iba-1 staining. RESULTS: In WT mice surgery induced significant cognitive decline in the Y-maze test, p = 0.019), microgliosis (p = 0.001), and increases in plasma IL-6 (p = 0.002) and HMGB1 (p = 0.001) when compared to anesthesia alone. TRAM34 administration attenuated the surgery-induced changes in cognition, microglial activation, and HMGB1 but not circulating IL-6 levels. In KCa3.1-/- mice surgery neither affected cognition nor microgliosis, although circulating IL-6 levels did increase (p < 0.001). CONCLUSION: Similar to our earlier report with Kv1.3, perioperative microglial KCa3.1 blockade decreases immediate perioperative cognitive changes, microgliosis as well as the peripheral trauma marker HMGB1 although surgery-induced IL-6 elevation was unchanged. Future research should address whether a synergistic interaction exists between blockade of Kv1.3 and KCa3.1 for preventing PNDs.


Asunto(s)
Proteína HMGB1 , Enfermedades Neuroinflamatorias , Ratones , Animales , Interleucina-6 , Trastornos Neurocognitivos , Cognición , Ratones Endogámicos C57BL
2.
Liver Transpl ; 27(7): 997-1006, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33306256

RESUMEN

Studies on how to protect livers perfused ex vivo can help design strategies for hepatoprotection and liver graft preservation. The protection of livers isolated from 24-hour versus 18-hour starved rats has been previously attributed to autophagy, which contributes to the energy-mobilizing capacity ex vivo. Here, we explored the signaling pathways responsible for this protection. In our experimental models, 3 major signaling candidates were considered in view of their abilities to trigger autophagy: high mobility group box 1 (HMGB1), adenosine monophosphate-activated protein kinase (AMPK), and purinergic receptor P2Y13. To this end, ex vivo livers isolated from starved rats were perfused for 135 minutes, after which perfusate samples were studied for protein release and biopsies were performed for evaluating signaling protein contents. For HMGB1, no significant difference was observed between livers isolated from rats starved for 18 and 24 hours at perfusion times of both 0 and 135 minutes. The phosphorylated and total forms of AMPK, but not their ratios, were significantly higher in 24-hour fasted than in 18-hour fasted livers. However, although the level of phosphorylated AMPK increased, perfusing ex vivo 18-hour fasted livers with 1 mM 5-aminoimidazole-4-carboxamide ribonucleotide, an AMPK activator, did not protect the livers. In addition, the adenosine diphosphate (ADP; and not adenosine monophosphate [AMP]) to AMP + ADP + adenosine triphosphate ratio increased in the 24-hour starved livers compared with that in the 18-hour starved livers. Moreover, perfusing 24-hour starved livers with 0.1 mM 2-[(2-chloro-5-nitrophenyl)azo]-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-4-pyridinecarboxaldehyde (MRS2211), a specific antagonist of the P2Y13 receptor, induced an increase in cytolysis marker levels in the perfusate samples and a decrease in the levels of autophagic marker microtubule-associated proteins 1 light chain 3 II (LC3II)/actin (and a loss of p62/actin decrease), indicating autophagy inhibition and a loss of protection. The P2Y13 receptor and ADP (a physiological activator of this receptor) are involved in the protection of ex vivo livers. Therapeutic opportunities for improving liver graft preservation through the stimulation of the ADP/P2Y13 receptor axis are further discussed.


Asunto(s)
Trasplante de Hígado , Adenosina Difosfato , Animales , Autofagia , Hígado , Trasplante de Hígado/efectos adversos , Perfusión , Ratas
3.
BMC Anesthesiol ; 20(1): 284, 2020 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-33187477

RESUMEN

BACKGROUND: Surgical interventions result in a postoperative rise in circulating inflammatory cytokines and high molecular group box protein 1 (HMGB1). Herein, the impact of a sedentary lifestyle and other age-related factors on the development of perioperative neurocognitive disorders (PND) following non-cardiac surgical procedures was assessed in an older (55-75 years-old) surgical population. METHODS: Prior to surgery, patients were asked questions regarding their sedentary behavior and daily habits. They also passed the Mini Mental State Examination (MMSE) and their blood circulating interleukin 6 (IL-6) and HMGB1 levels were assayed by ELISA. IL-6 and HMGB1 measurements were repeated respectively 6 and 24 h after surgery. MMSE was re-evaluated 6 weeks and whenever possible 3 months after surgery. RESULTS: Thirty-eight patients were enrolled in the study from January until July 2019. The study identified self-sufficiency, multilinguism, and overall health score on the geriatric depression scale, as protectors against PND. No other demographic (age, sex), environmental (solitary/non-solitary housing, professional and physical activities, smoking, alcohol drinking), comorbidity (antipsychotic drug uptake, diabetic state) and type of surgery (orthopedic, general, genitourinary) influenced the development of PND. Although some factors (surgery type and age) influenced the surgery-induced rise in the circulating IL-6 levels, they did not impact HMGB1. CONCLUSION: Inflammaging, reflected by the greater increment of surgery-induced IL-6 in patients with advanced age, was present. As trauma-induced release of HMGB1 was not similarly affected by age, we surmise that HMGB1, rather than circulating cytokines, is the key driver of the trauma-induced inflammatory cascade leading to PND. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT03805685 .


Asunto(s)
Inflamación/sangre , Inflamación/epidemiología , Trastornos Neurocognitivos/sangre , Trastornos Neurocognitivos/epidemiología , Periodo Preoperatorio , Conducta Sedentaria , Anciano , Bélgica/epidemiología , Estudios de Cohortes , Femenino , Evaluación Geriátrica/métodos , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
4.
J Biol Chem ; 293(17): 6374-6386, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29496995

RESUMEN

Protein carbamylation by cyanate is a post-translational modification associated with several (patho)physiological conditions, including cardiovascular disorders. However, the biochemical pathways leading to protein carbamylation are incompletely characterized. This work demonstrates that the heme protein myeloperoxidase (MPO), which is secreted at high concentrations at inflammatory sites from stimulated neutrophils and monocytes, is able to catalyze the two-electron oxidation of cyanide to cyanate and promote the carbamylation of taurine, lysine, and low-density lipoproteins. We probed the role of cyanide as both electron donor and low-spin ligand by pre-steady-state and steady-state kinetic analyses and analyzed reaction products by MS. Moreover, we present two further pathways of carbamylation that involve reaction products of MPO, namely oxidation of cyanide by hypochlorous acid and reaction of thiocyanate with chloramines. Finally, using an in vivo approach with mice on a high-fat diet and carrying the human MPO gene, we found that during chronic exposure to cyanide, mimicking exposure to pollution and smoking, MPO promotes protein-bound accumulation of carbamyllysine (homocitrulline) in atheroma plaque, demonstrating a link between cyanide exposure and atheroma. In summary, our findings indicate that cyanide is a substrate for MPO and suggest an additional pathway for in vivo cyanate formation and protein carbamylation that involves MPO either directly or via its reaction products hypochlorous acid or chloramines. They also suggest that chronic cyanide exposure could promote the accumulation of carbamylated proteins in atherosclerotic plaques.


Asunto(s)
Cianatos , Cianuros , Peroxidasa , Placa Aterosclerótica/enzimología , Carbamilación de Proteína , Animales , Citrulina/análogos & derivados , Citrulina/química , Citrulina/genética , Citrulina/metabolismo , Cianatos/química , Cianatos/metabolismo , Cianuros/química , Cianuros/metabolismo , Humanos , Ratones , Ratones Noqueados , Oxidación-Reducción , Peroxidasa/química , Peroxidasa/genética , Peroxidasa/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/patología
6.
J Lipid Res ; 55(4): 747-57, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24534704

RESUMEN

Oxidation of LDL by the myeloperoxidase (MPO)-H2O2-chloride system is a key event in the development of atherosclerosis. The present study aimed at investigating the interaction of MPO with native and modified LDL and at revealing posttranslational modifications on apoB-100 (the unique apolipoprotein of LDL) in vitro and in vivo. Using amperometry, we demonstrate that MPO activity increases up to 90% when it is adsorbed at the surface of LDL. This phenomenon is apparently reflected by local structural changes in MPO observed by circular dichroism. Using MS, we further analyzed in vitro modifications of apoB-100 by hypochlorous acid (HOCl) generated by the MPO-H2O2-chloride system or added as a reagent. A total of 97 peptides containing modified residues could be identified. Furthermore, differences were observed between LDL oxidized by reagent HOCl or HOCl generated by the MPO-H2O2-chloride system. Finally, LDL was isolated from patients with high cardiovascular risk to confirm that our in vitro findings are also relevant in vivo. We show that several HOCl-mediated modifications of apoB-100 identified in vitro were also present on LDL isolated from patients who have increased levels of plasma MPO and MPO-modified LDL. In conclusion, these data emphasize the specificity of MPO to oxidize LDL.


Asunto(s)
Apolipoproteína B-100/metabolismo , Lipoproteínas LDL/metabolismo , Peroxidasa/metabolismo , Secuencia de Aminoácidos , Apolipoproteína B-100/química , Estudios de Casos y Controles , Humanos , Peróxido de Hidrógeno/química , Hidrólisis , Enfermedades Renales/sangre , Enfermedades Renales/terapia , Lipoproteínas LDL/química , Datos de Secuencia Molecular , Oxidación-Reducción , Fragmentos de Péptidos , Peroxidasa/química , Procesamiento Proteico-Postraduccional , Diálisis Renal
8.
Mediators Inflamm ; 2014: 134635, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25530680

RESUMEN

Cardiovascular disease linked to atherosclerosis is the leading cause of death worldwide. Atherosclerosis is mainly linked to dysfunction in vascular endothelial cells and subendothelial accumulation of oxidized forms of LDL. In the present study, we investigated the role of myeloperoxidase oxidized LDL (Mox-LDL) in endothelial cell dysfunction. We studied the effect of proinflammatory Mox-LDL treatment on endothelial cell motility, a parameter essential for normal vascular processes such as angiogenesis and blood vessel repair. This is particularly important in the context of an atheroma plaque, where vascular wall integrity is affected and interference with its repair could contribute to progression of the disease. We investigated in vitro the effect of Mox-LDL on endothelial cells angiogenic properties and we also studied the signalling pathways that could be affected by analysing Mox-LDL effect on the expression of angiogenesis-related genes. We report that Mox-LDL inhibits endothelial cell motility and tubulogenesis through an increase in miR-22 and heme oxygenase 1 expression. Our in vitro data indicate that Mox-LDL interferes with parameters associated with angiogenesis. They suggest that high LDL levels in patients would impair their endothelial cell capacity to cope with a damaged endothelium contributing negatively to the progression of the atheroma plaque.


Asunto(s)
Células Endoteliales/citología , Endotelio Vascular/metabolismo , Hemo-Oxigenasa 1/metabolismo , Lipoproteínas LDL/metabolismo , MicroARNs/metabolismo , Peroxidasa/metabolismo , Animales , Células CHO , Movimiento Celular , Cricetinae , Cricetulus , Progresión de la Enfermedad , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Neovascularización Patológica , Placa Aterosclerótica/metabolismo , Transducción de Señal , Lesiones del Sistema Vascular/metabolismo , Cicatrización de Heridas
9.
Heliyon ; 10(11): e32350, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38947466

RESUMEN

Environmental toxins, particularly liposoluble compounds that accumulate in adipose tissues, present a risk for newborns, not only through breastfeeding but also through artificial milks. These compounds pass into breast milk, potentially exposing infants to harmful substances. In a monocentric observational study carried out in the Charleroi region, we employed liquid chromatography coupled with mass spectrometry to analyze the presence of environmental toxins in milk for newborns. Out of 39 breast milk and 12 artificial milk samples analyzed, 15 and six contained at least one pesticide, respectively, with nine different pesticides identified from a panel of 54 substances tested. The study found an association between the consumption of fresh produce and a higher presence of pesticides in breast milk. This. highlights the broader issue of environmental toxin exposure for infants, regardless of the feeding method. The results underline the need for a comprehensive approach when considering the establishment of breast milk banks and the safety of artificial milk, especially in the context of potential risks to premature newborns. Our findings not only validate the analysis technique for detecting toxins in breast milk but also suggest the necessity for a larger prospective study to explore these risks in the future.

10.
Biochimie ; 168: 53-82, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31626852

RESUMEN

The occurrence of 3-methylglutaconic aciduria (3-MGA) is a well understood phenomenon in leucine oxidation and ketogenesis disorders (primary 3-MGAs). In contrast, its genesis in non-canonical (secondary) 3-MGAs, a growing-up group of disorders encompassing more than a dozen of inherited metabolic diseases, is a mystery still remaining unresolved for three decades. To puzzle out this anthologic problem of metabolism, three clues were considered: (i) the variety of disorders suggests a common cellular target at the cross-road of metabolic and signaling pathways, (ii) the response to leucine loading test only discriminative for primary but not secondary 3-MGAs suggests these latter are disorders of extramitochondrial HMG-CoA metabolism as also attested by their failure to increase 3-hydroxyisovalerate, a mitochondrial metabolite accumulating only in primary 3-MGAs, (iii) the peroxisome is an extramitochondrial site possessing its own pool and displaying metabolism of HMG-CoA, suggesting its possible involvement in producing extramitochondrial 3-methylglutaconate (3-MG). Following these clues provides a unifying common basis to non-canonical 3-MGAs: constitutive mitochondrial dysfunction induces AMPK activation which, by inhibiting early steps in cholesterol and fatty acid syntheses, pipelines cytoplasmic acetyl-CoA to peroxisomes where a rise in HMG-CoA followed by local dehydration and hydrolysis may lead to 3-MGA yield. Additional contributors are considered, notably for 3-MGAs associated with hyperammonemia, and to a lesser extent in CLPB deficiency. Metabolic and signaling itineraries followed by the proposed scenario are essentially sketched, being provided with compelling evidence from the literature coming in their support.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Errores Innatos del Metabolismo/metabolismo , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Acetilcoenzima A/metabolismo , Animales , Humanos
11.
Sci Rep ; 10(1): 10337, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32587308

RESUMEN

The flow diverter is becoming a standard device for treating cerebral aneurysms. The aim of this in vitro study was to evaluate the impact of flow complexity on the effectiveness of flow diverter stents in a cerebral aneurysm model. The flow pattern of a carotid artery was decomposed into harmonics to generate four flow patterns with different pulsatility indexes ranging from 0.72 to 1.44. The effect of flow diverters on the aneurysm was investigated by injecting red dye or erythrocytes as markers. The recorded images were postprocessed to evaluate the maximum filling of the aneurysm cavity and the washout time. There were significant differences in the cut-off flows between the markers, linked to the flow complexity. Increasing the pulsatility index altered the performance of the flow diverter. The red dye was more sensitive to changes in flow than the red blood cell markers. The flow cut-off depended on the diverter design and the diverter deployment step was crucial for reproducibility of the results. These results strongly suggest that flow complexity should be considered when selecting a flow diverter.


Asunto(s)
Circulación Cerebrovascular/fisiología , Procedimientos Endovasculares/instrumentación , Aneurisma Intracraneal/cirugía , Modelos Cardiovasculares , Stents , Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/fisiopatología , Procedimientos Endovasculares/métodos , Humanos , Aneurisma Intracraneal/diagnóstico por imagen , Aneurisma Intracraneal/fisiopatología , Diseño de Prótesis , Reproducibilidad de los Resultados , Resultado del Tratamiento , Grabación en Video
12.
Nutrition ; 67-68: 110517, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31479844

RESUMEN

OBJECTIVE: Dietary and energetic restrictions are endowed with protection against experimental injuries. However, a drop in cell energetic status under a critical threshold may prevent protection, as previously observed for livers isolated from rat donors undergoing 18-h fasting versus feeding. The aim of this study was to further explore, in the latter model, links between nutritional status, energy availability, and protection through lengthening of rat fasting to 24 h and withdrawal of energy sources from perfusions. METHODS: Energy-free perfused ex vivo livers from fed, 18-h-fasted, and 24-h-fasted rats were studied during 135 min for cytolysis (potassium, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase releases in perfusates), cell deaths (activated caspase-3 [apoptosis], LC3 II/actin and p62/actin ratios [autophagy]), glycogen stores, glucose, and lactate production. RESULTS: Cytolysis was significantly increased by 18-h and 24-h fasting versus feeding but unexpectedly the increase was less for 24-h fasting than it was for 18-h fasting. Apoptotic marker caspase 3 significantly increased under fed and 18-h fasting but not 24-h fasting conditions. Autophagic marker LC3 II/actin significantly increased during perfusion in the 24-h fasted group but neither fed nor 18-h fasted groups. Autophagic induction also was supported by a drop in the p62/actin ratio. Under perfusion with 3-methyladenine, a standard autophagy inhibitor, protection and enhanced autophagy provided by 24-h but not 18-h fasting were lost without affecting apoptosis. CONCLUSIONS: Liver protections are obviously influenced by nutritional status in a way that is parallel to hepatic energy mobilization capacities (glycogen plus autophagy) with a decreased order of protection: Fed >24-h fasted >18-h fasted >24-h fasted + 3-methyladenine livers. By showing that autophagy induction limits starvation-induced cytolysis, the present work supports the emerging view that autophagy inducers might improve health benefits of diet restriction.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Metabolismo Energético/fisiología , Ayuno/fisiología , Estado Nutricional/fisiología , Perfusión/efectos adversos , Animales , Modelos Animales de Enfermedad , Hígado/metabolismo , Factores Protectores , Ratas
13.
Cardiovasc Res ; 115(2): 463-475, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29982533

RESUMEN

Aims: The term angiogenesis refers to sprouting of new blood vessels from pre-existing ones. The angiogenic process involves cell migration and tubulogenesis requiring interaction between endothelial cells and the extracellular matrix. Human peroxidasin 1 (hsPxd01) is a multidomain heme peroxidase found embedded in the basement membranes. As it promotes the stabilization of extracellular matrix, we investigated its possible role in angiogenesis both in vitro and in vivo. Methods and results: We analysed the effects of peroxidasin 1 gene silencing and supplementation by recombinant hsPxd01 in TeloHAEC endothelial cells on cell migration, tubulogenesis in matrigel, and intracellular signal transduction as assessed by kinase phosphorylation and expression of pro-angiogenic genes as measured by qRT-PCR. We further evaluated the angiogenic potential of recombinant peroxidasin in a chicken chorioallantoic membrane model. RNA silencing of endogenous hsPxd01 significantly reduced tube formation and cell migration, whereas supplementation by the recombinant peroxidase promoted tube formation in vitro and stimulated vascularization in vivo through its catalytic activity. Moreover, recombinant hsPxd01 promoted phosphorylation of Extracellular signal-Regulated Kinases (ERK1/2), Protein kinase B (Akt), and Focal Adhesion Kinase (FAK), and induced the expression of pro-angiogenic downstream genes: Platelet Derived Growth Factor Subunit B (PDGFB), endothelial-derived Heparin Binding EGF-like growth factor (HB-EGF), CXCL-1, Hairy-Related Transcription Factor 1 (HEY-1), DNA-binding protein inhibitor (ID-2), Snail Family Zinc Finger 1 (SNAI-1), as well as endogenous hsPxd01. However, peroxidasin silencing significantly reduced Akt and FAK phosphorylation but induced ERK1/2 activation after supplementation by recombinant hsPxd01. While hsPxd01 silencing significantly reduced expression of HEY-1, ID-2, and PDGFB, it did not affect expression of SNAI-1, HB-EGF, and CXCL-1 after supplementation by recombinant hsPxd01. Conclusion: Our findings suggest a role of enzymatically active peroxidasin 1 as a pro-angiogenic peroxidase and a modulator of ERK1/2, Akt and FAK signalling.


Asunto(s)
Células Endoteliales/enzimología , Quinasa 1 de Adhesión Focal/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neovascularización Fisiológica , Peroxidasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Embrión de Pollo , Activación Enzimática , Regulación de la Expresión Génica , Humanos , Peroxidasas/genética , Fosforilación , Transducción de Señal
14.
Cardiovasc Pathol ; 17(5): 285-8, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18402816

RESUMEN

The adhesion of the monocytes to the endothelium and their extravasation into the intima are key steps in atherogenesis. Studies showed the essential role of L-selectin (CD62-L), expressed by the monocytes, and the platelets by forming complexes with monocytes. The delipided apolipoprotein (Apo) A or high-density lipoprotein (HDL) has antiinflammatory effects on monocytes and can bind platelets (monocyte-platelet complexes [MPCs]). The aim of this study was to identify a possible relationship between the MPCs, the monocyte subset, and ApoA-I/HDL serum levels in vivo. Platelet-monocyte complexes were estimated by flow cytometry in 16 volunteers. Monocyte-platelet interaction was characterized by the percentage of monocytes coexpressing the constitutive platelet marker, glycocalicin gpIb-alpha (CD42b; CD42b+monocytes in %, MPC%). Monocytes were divided into four subsets based on lipopolysaccharide receptor (CD14) and FcgammaIII receptor (CD16) expression (CD14++/CD16-, G1; CD14++/CD16+, G2; CD14+/CD16-, G3; and CD14+/CD16+, G4). HDL and ApoA-I levels were measured by routine laboratory techniques. MPC% in the different subsets were G1=8.1+/-3.4%, G2=21.2+/-14%, G3=18+/-12.6%, and G4=22.3+/-14.3% (analysis of variance: P<.001). MPC% in the entire monocyte population was negatively correlated to ApoA-I (R=-0.71, P=.001). The relationship between ApoA-I and MPC% was found mainly in the subsets G1 (R=-0.67, P=.001) and G2 (R=-0.61, P=.01). MPC% was not correlated with any other lipids or lipoprotein or high-sensitivity C-reactive protein. When whole blood was incubated with HDL/ApoA-I, no modification of platelet CD42b fluorescence was observed, indicating that there is no direct interaction between the HDL/ApoA-I and the CD42b fluorescence. Among the monocytes, the G2 subset appeared to have the highest extravasation potential. Indeed, we previously showed that those cells overexpressed CD62-L, and we observed in this work that they were coated with platelets more than the G1 cells. The G2 subset could be more directly involved in the development of atherosclerotic lesions.


Asunto(s)
Apolipoproteína A-I/sangre , Plaquetas/citología , Receptores de Lipopolisacáridos/biosíntesis , Monocitos/citología , Receptores de IgG/biosíntesis , Adulto , Plaquetas/metabolismo , Citometría de Flujo , Humanos , Monocitos/metabolismo
15.
Atherosclerosis ; 279: 73-87, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30423477

RESUMEN

BACKGROUND AND AIMS: Endothelial cells are main actors in vascular homeostasis as they regulate vascular pressure and permeability as well as hemostasis and inflammation. Disturbed stimuli delivered to and by endothelial cells correlate with the so-called endothelial dysfunction and disrupt this homeostasis. As constituents of the inner layer of blood vessels, endothelial cells are also involved in angiogenesis. Apolipoprotein Ls (APOL) comprise a family of newly discovered apolipoproteins with yet poorly understood function, and are suggested to be involved in inflammatory processes and cell death mechanisms. Here we investigate the role of APOLs in endothelial cells stimulated with factors known to be involved in atherogenesis and their possible contribution to endothelial dysfunction with an emphasis on inflammation driven-angiogenesis in vitro. METHODS: Using the CRISPR/Cas9 technique, we analyzed the effect of APOL3 gene knock out in HMEC-1 endothelial cells on cell migration, tubulogenesis, endothelial permeability, intracellular signal transduction as assessed by kinase phosphorylation, and angiogenesis gene expression (measured by qRT-PCR). RESULTS: Our results indicate that among the family, APOL3 was the only member induced by myeloperoxidase, oxidized LDL, VEGF and FGF treatments. APOL3 invalidation increased endothelial permeability, reduced wound repair and tubule formation in vitro, the latter only in MPO and VEGF-induced conditions. Accordingly, some pro-angiogenic signaling pathways (ERK1/2 and FAK but not Akt) and some pro-angiogenic genes were partially inhibited in APOL3 knock out cells. CONCLUSIONS: These findings suggest the involvement of APOL3 in angiogenesis in vitro and as a modulator of MAPK and FAK signaling in endothelial cells.


Asunto(s)
Apolipoproteínas L/metabolismo , Células Endoteliales/enzimología , Quinasa 1 de Adhesión Focal/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neovascularización Fisiológica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Inductores de la Angiogénesis/farmacología , Apolipoproteínas L/genética , Aterosclerosis/enzimología , Aterosclerosis/patología , Permeabilidad Capilar , Movimiento Celular , Proliferación Celular , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Humanos , Inflamación/enzimología , Inflamación/patología , Mediadores de Inflamación/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Transducción de Señal
16.
Atherosclerosis ; 272: 108-117, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29597117

RESUMEN

BACKGROUND AND AIMS: Oxidation of native low-density lipoproteins (LDLs-nat) plays an important role in the development of atherosclerosis. A major player in LDL-nat oxidation is myeloperoxidase (MPO), a heme enzyme present in azurophil granules of neutrophils and monocytes. MPO produces oxidized LDLs called Mox-LDLs, which cause a pro-inflammatory response in human microvascular endothelial cells (HMEC), monocyte/macrophage activation and formation of foam cells. Resolvin D1 (RvD1) is a compound derived from the metabolism of the polyunsaturated fatty acid DHA, which promotes resolution of inflammation at the ng/ml level. METHODS: In the present study, we used liquid chromatography-mass spectrometry (LC-MS/MS) to investigate the synthesis of RvD1 and its precursors - 17(S)-hydroxy docosahexaenoic acid (17S-HDHA) and docosahexaenoic acid (DHA) - by HMEC, in the presence of several concentrations of Mox-LDLs, copper-oxidized-LDLs (Ox-LDLs), and native LDLs or in mouse plasma. The LC-MS/MS method has been validated and applied to cell supernatants and plasma to measure production of RvD1 and its precursors in several conditions. RESULTS: Mox-LDLs played a significant role in the synthesis of RvD1 and 17S-HDHA from DHA compared to Ox-LDLs. Moreover, Mox-LDLs and LDLs-nat acted in synergy to produce RvD1. In addition, different correlations were found between RvD1 and M1 macrophages, age of mice or Cl-Tyr/Tyr ratio. CONCLUSIONS: These results suggest that although Mox-LDLs are known to be pro-inflammatory and deleterious in the context of atherosclerosis, they are also able to induce a pro-resolution effect by induction of RvD1 from HMEC. Finally, our data also suggest that HMEC can produce RvD1 on their own.


Asunto(s)
Ácidos Docosahexaenoicos/biosíntesis , Células Endoteliales/citología , Lipoproteínas LDL/sangre , Peroxidasa/metabolismo , Animales , Aterosclerosis/metabolismo , Calibración , Línea Celular , Cromatografía Liquida , Cobre , Humanos , Inflamación , Límite de Detección , Lípidos/sangre , Macrófagos , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Oxígeno , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo
17.
Data Brief ; 18: 1160-1171, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29900290

RESUMEN

This article present data related to the publication entitled "Native and myeloperoxidase-oxidized low-density lipoproteins act in synergy to induce release of resolvin-D1 from endothelial cells" (Dufour et al., 2018). The supporting materials include results obtained by Mox-LDLs stimulated macrophages and investigation performed on scavenger receptors. Linear regressions (RvD1 vs age of mice and RvD1 vs CL-Tyr/Tyr) and Data related to validation were also presented. The interpretation of these data and further extensive insights can be found in Dufour et al. (2018) [1].

18.
Nutrition ; 23(1): 53-61, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17084595

RESUMEN

OBJECTIVE: Ischemia-reperfusion injury is a determinant in liver injury occurring during surgical procedures, ischemic states, and multiple organ failure. The pre-existing nutritional status of the liver, i.e., fasting, might contribute to the extent of tissue injury. This study investigated whether Intralipid, a solution containing soybean oil, egg phospholipids, and glycerol, could protect ex vivo perfused livers of fasting rats from anoxia-reoxygenation injury. METHODS: The portal vein was cannulated, and the liver was removed and perfused in a closed ex vivo system. Isolated livers were perfused with glucose 5.5 and 15 mM, and two different concentrations of Intralipid, i.e., 0.5:100 and 1:100 (v/v) Intralipid 10%:medium (n = 5 in each group). The experiment consisted of perfusion for 15 min, warm anoxia for 60 min, and reoxygenation during 60 min. Hepatic enzymes, potassium, glucose, lactate, bilirubin, dienes, trienes, and cytochrome-c were analyzed in perfusate samples. The proportion of glycogen in hepatocytes was determined in biopsies. RESULTS: Intralipid attenuated transaminases, lactate dehydrogenase, potassium, diene, and triene release in the perfusate (dose-dependant) during the reoxygenation phase when compared with glucose-treated groups. The concentration of cytochrome-c in the medium was the highest in the 5.5-mM glucose group. The glycogen content was low in all livers at the start of the experiment. CONCLUSION: Intralipid presents, under the present experimental conditions, a better protective effect than glucose in anoxia-reoxygenation injury of the rat liver.


Asunto(s)
Emulsiones Grasas Intravenosas/farmacología , Hígado/efectos de los fármacos , Hígado/lesiones , Oxígeno/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Animales , Bilirrubina/sangre , Glucemia/metabolismo , Citocromos c/metabolismo , Relación Dosis-Respuesta a Droga , Ayuno , Femenino , Hepatectomía , Humanos , Hígado/citología , Hígado/patología , Glucógeno Hepático/metabolismo , Estado Nutricional , Técnicas de Cultivo de Órganos , Perfusión , Distribución Aleatoria , Ratas , Ratas Wistar
19.
Nutrition ; 35: 21-27, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28241986

RESUMEN

OBJECTIVE: Dietary restriction or reduced food intake was supported to protect against renal and hepatic ischemic injury. In this vein, short fasting was recently shown to protect in situ rat liver against ischemia-reperfusion. Here, perfused ex vivo instead of in situ livers were exposed to ischemia-reperfusion to study the impact of disconnecting liver from extrahepatic supply in energetic substrates on the protection given by short-term fasting. METHODS: Perfused ex vivo livers using short (18 h) fasted compared with fed rats were submitted to ischemia-reperfusion and studied for release of cytolysis markers in the perfusate. Energetic stores are differently available in time and cell energetic charges (ratio of adenosine triphosphate plus half of the adenosine diphosphate concentrations to the sum of adenosine triphosphate + adenosine diphosphate + adenosine monophosphate concentrations), adenosine phosphates, and glycogen, which were further measured at different time points in livers. RESULTS: Short fasting versus feeding failed to protect perfused ex vivo rat livers against ischemia/reperfusion, increasing the release of cytolysis markers (potassium, cytochrome c, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase) in the perfusate during reoxygenation phase. Toxicity of short fasting versus feeding was associated with lower glycogen and energetic charges in livers and lower lactate levels in the perfusate. CONCLUSION: High energetic charge, intracellular content in glycogen, and glycolytic activity may protect liver against ischemia/reperfusion injury. This work does not question how much the protective role previously demonstrated in the literature for dietary restriction and short fasting. In fact, it suggests that exceeding the energy charge threshold value of 0.3 might trigger the effectiveness of this protective role.


Asunto(s)
Ayuno , Hígado/irrigación sanguínea , Daño por Reperfusión/patología , Alanina Transaminasa/metabolismo , Animales , Aspartato Aminotransferasas/metabolismo , Restricción Calórica , Citocromos c/metabolismo , Femenino , Glucógeno/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Hígado/patología , Potasio/metabolismo , Ratas , Ratas Wistar , Daño por Reperfusión/prevención & control , Factores de Tiempo
20.
Oncol Lett ; 11(6): 3660-3668, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27284370

RESUMEN

Glutathione (GSH) is the keystone of the cellular response toward oxidative stress. Elevated GSH content correlates with increased resistance to chemotherapy and radiotherapy of head and neck (HN) tumors. The purpose of the present cross-sectional study was to evaluate whether the expression of glutamate-cysteine ligase (GCL) accounts for the increased GSH availability observed in HN squamous cell carcinoma (SCC). For that purpose, the messenger (m)RNA levels of the modifier (M) and catalytic (C) subunits of GCL and its putative regulators (namely, nuclear factor erythroid 2-related factor 2, heme oxygenase-1 and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) were monitored in 35 surgical resections of untreated HNSCC. The localization of GCLM was evaluated using in situ hybridization and immunohistochemistry. GCLM expression was significantly increased in tumor samples, compared with normal mucosa, both at the mRNA and protein level (P=0.029), but the pathway of GCLM activation remains to be elucidated. Protein expression of GCLM was detected in the cytoplasm and nucleus. GCLM and the proliferation marker Ki-67 displayed a similar distribution, being both mainly expressed at the periphery of tumor lobules. The present study reported increased expression of GCL and the rate-limiting enzyme of GSH synthesis, within HNSCC. The nuclear localization of GCLM and the concomitant expression of Ki-67 suggested that the localization of GSH synthesis contributes to the protection against oxidative stress within hotspots of cell proliferation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA