Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Med Virol ; 95(2): e28484, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36625386

RESUMEN

The apprehension of needles related to injection site pain, risk of transmitting bloodborne pathogens, and effective mass immunization have led to the development of a needle-free injection system (NFIS). Here, we evaluated the efficacy of the NFIS and needle injection system (NIS) for the delivery and immunogenicity of DNA vaccine candidate ZyCoV-D in rhesus macaques against SARS-CoV-2 infection. Briefly, 20 rhesus macaques were divided into 5 groups (4 animals each), that is, I (1 mg dose by NIS), II (2 mg dose by NIS), III (1 mg dose by NFIS), IV (2 mg dose by NFIS) and V (phosphate-buffer saline [PBS]). The macaques were immunized with the vaccine candidates/PBS intradermally on Days 0, 28, and 56. Subsequently, the animals were challenged with live SARS-CoV-2 after 15 weeks of the first immunization. Blood, nasal swab, throat swab, and bronchoalveolar lavage fluid specimens were collected on 0, 1, 3, 5, and 7 days post infection from each animal to determine immune response and viral clearance. Among all the five groups, 2 mg dose by NFIS elicited significant titers of IgG and neutralizing antibody after immunization with enhancement in their titers postvirus challenge. Besides this, it also induced increased lymphocyte proliferation and cytokine response. The minimal viral load post-SARS-CoV-2 challenge and significant immune response in the immunized animals demonstrated the efficiency of NFIS in delivering 2 mg ZyCoV-D vaccine candidate.


Asunto(s)
COVID-19 , Vacunas de ADN , Vacunas Virales , Animales , SARS-CoV-2 , Macaca mulatta , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Inmunogenicidad Vacunal
2.
Indian J Med Res ; 157(1): 41-50, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37040226

RESUMEN

Background & objectives: Focus on non-polio enteroviruses (NPEVs) causing acute flaccid paralysis (AFP) due to myelitis has increased with the containment of the poliovirus. Enterovirus-B88 (EV-B88) has been associated with the AFP cases in Bangladesh, Ghana, South Africa, Thailand and India. In India, EV-B88 infection was linked to AFP a decade ago; however, to date, no complete genome has been made available. In this study, the complete genome sequence of EV-B88 was identified and reported from two different States (Bihar and Uttar Pradesh) in India using the next-generation sequencing technique. Methods: Virus isolation was performed on the three AFP suspected cases as per the WHO-recommended protocol. Samples showing cytopathic effects in the human Rhabdocarcinoma were labelled as NPEVs. Next-generation sequencing was performed on these NPEVs to identify the aetiological agent. The contiguous sequences (contigs) generated were identified, and reference-based mapping was performed. Results: EV-B88 sequences retrieved in our study were found to be 83 per cent similar to the EV-B88 isolate from Bangladesh in 2001 (strain: BAN01-10398; Accession number: AY843306.1). Recombination analyses of these samples demonstrate recombination events with sequences from echovirus-18 and echovirus-30. Interpretation & conclusions: Recombination events in the EV-B serotypes are known, and this work reconfirms the same for EV-B88 isolates also. This study is a step in increasing the awareness about EV-B88 in India and emphasizes future studies to be conducted in the identification of other types of EV present in India.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Mielitis , Humanos , Enterovirus/genética , alfa-Fetoproteínas/genética , Parálisis , Filogenia , Infecciones por Enterovirus/complicaciones , India , Mielitis/complicaciones , Recombinación Genética
3.
J Med Virol ; 94(7): 3404-3409, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35211985

RESUMEN

International travel has been the major source for the rapid spread of new SARS-CoV-2 variants across the globe. During SARS-CoV-2 genomic surveillance, a total of 212 SARS-CoV-2 positive clinical specimens were sequenced using next-generation sequencing. A complete SARS-CoV-2 genome could be retrieved from 90 clinical specimens. Of them, 14 sequences belonged to the Eta variant from clinical specimens of international travelers (n = 12) and local residents (n = 2) of India, and 76 belonged to other SARS-CoV-2 variants. Of all the Eta-positive specimens, the virus isolates were obtained from the clinical specimens of six international travelers. Many variants of interest have been found to cause substantial community transmission or cluster infections. The detection of this variant with lethal E484K mutation across the globe and India necessitates persistent genomic surveillance of the SARS-CoV-2 variants, which would aid in taking preventive action.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , SARS-CoV-2/genética
4.
BMC Infect Dis ; 21(1): 162, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563231

RESUMEN

BACKGROUND: In June 2019, Nipah virus (NiV) infection was detected in a 21-year-old male (index case) of Ernakulum, Kerala, India. This study was undertaken to determine if NiV was in circulation in Pteropus species (spp) in those areas where the index case had visit history in 1 month. METHODS: Specialized techniques were used to trap the Pteropus medius bats (random sampling) in the vicinity of the index case area. Throat and rectal swabs samples of 141 bats along with visceral organs of 92 bats were collected to detect the presence of NiV by real-time reverse transcriptase-polymerase chain reaction (qRTPCR). Serum samples of 52 bats were tested for anti-NiV Immunoglobulin (Ig) G antibodies by Enzyme-Linked Immunosorbent Assay (ELISA). The complete genome of NiV was sequenced by next-generation sequencing (NGS) from the tissues and swab samples of bats. RESULTS: One rectal swab sample and three bats visceral organs were found positive for the NiV. Interestingly, 20.68% (12/58) of Pteropus were positive for anti-NiV IgG antibodies. NiV sequences of 18,172; 17,200 and 15,100 nucleotide bps could be retrieved from three Pteropus bats. CONCLUSION: A distinct cluster of NiV sequences, with significant net-evolutionary nucleotide divergence, was obtained, suggesting the circulation of new genotype (I-India) in South India. NiV Positivity in Pteropus spp. of bats revealed that NiV is circulating in many districts of Kerala state, and active surveillance of NiV should be immediately set up to know the hotspot area for NiV infection.


Asunto(s)
Quirópteros/virología , Infecciones por Henipavirus/diagnóstico , Virus Nipah/genética , Animales , Anticuerpos Antivirales/sangre , Brotes de Enfermedades , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/veterinaria , Infecciones por Henipavirus/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunoglobulina G/sangre , India/epidemiología , Virus Nipah/clasificación , Virus Nipah/inmunología , Filogenia , ARN Viral/química , ARN Viral/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Recto/virología
5.
Indian J Med Res ; 154(4): 592-597, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-35435344

RESUMEN

Background & objectives: Varicella zoster virus (VZV) strains are classified into six different clades based on the sequencing of its genome. Clades 4 and 5 are reported from India based on the single-nucleotide polymorphism (SNP). Till now, multiple clade circulations using partial sequences have been reported from India due to the lack of availability of the full VZV genome sequence. This study conducted a genome sequencing of VZV in India to identify circulating clade. Methods: Four clinical samples obtained from symptomatic patients tested positive for VZV by real-time PCR were used. These four samples were preferred to retrieve the genomic VZV sequence using the next-generation sequencing method. A reference-based assembly method was used to retrieve the genome of VZV, which was further analyzed. Results: At the least, 98 per cent of the whole-genome sequences were recovered from the four samples. The VZV sequences obtained in this study formed a separate monophyletic branch with clade 5, indicating it to be evolved from a distinct ancestor. The nucleotide-based analysis revealed 13 different SNP mutations and one multiple nucleotide variation in the VZV sequences when compared to one of the clade 5 genomes having accession number: DQ457052.1. Interpretation & conclusions: The present study described approximately 98 per cent of the genome sequence of VZV from India. The availability of these genomic sequences will lead to enrichment in the clinical genomic data set from India. The available data would help in the development of diagnostic methods along with evolutionary analysis. We hypothesize the existence of a new sub-clade that belongs to clade 5 and propose further experiments to confirm these results.


Asunto(s)
Herpes Zóster , Herpesvirus Humano 3 , Humanos , Genoma Viral/genética , Genotipo , Herpes Zóster/epidemiología , Herpes Zóster/genética , Herpesvirus Humano 3/genética , Filogenia , Polimorfismo de Nucleótido Simple
6.
J Virol ; 93(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30971476

RESUMEN

In 2011, ticks were collected from livestock following an outbreak of Crimean Congo hemorrhagic fever (CCHF) in Gujarat state, India. CCHF-negative Hyalomma anatolicum tick pools were passaged for virus isolation, and two virus isolates were obtained, designated Karyana virus (KARYV) and Kundal virus (KUNDV), respectively. Traditional reverse transcription-PCR (RT-PCR) identification of known viruses was unsuccessful, but a next-generation sequencing (NGS) approach identified KARYV and KUNDV as viruses in the Reoviridae family, Orbivirus and Coltivirus genera, respectively. Viral genomes were de novo assembled, yielding 10 complete segments of KARYV and 12 nearly complete segments of KUNDV. The VP1 gene of KARYV shared a most recent common ancestor with Wad Medani virus (WMV), strain Ar495, and based on nucleotide identity we demonstrate that it is a novel WMV strain. The VP1 segment of KUNDV shares a common ancestor with Colorado tick fever virus, Eyach virus, Tai Forest reovirus, and Tarumizu tick virus from the Coltivirus genus. Based on VP1, VP6, VP7, and VP12 nucleotide and amino acid identities, KUNDV is proposed to be a new species of Coltivirus Electron microscopy supported the classification of KARYV and KUNDV as reoviruses and identified replication morphology consistent with other orbi- and coltiviruses. The identification of novel tick-borne viruses carried by the CCHF vector is an important step in the characterization of their potential role in human and animal pathogenesis.IMPORTANCE Ticks and mosquitoes, as well Culicoides, can transmit viruses in the Reoviridae family. With the help of next-generation sequencing (NGS), previously unreported reoviruses such as equine encephalosis virus, Wad Medani virus (WMV), Kammavanpettai virus (KVPTV), and, with this report, KARYV and KUNDV have been discovered and characterized in India. The isolation of KUNDV and KARYV from Hyalomma anatolicum, which is a known vector for zoonotic pathogens, such as Crimean Congo hemorrhagic fever virus, Babesia, Theileria, and Anaplasma species, identifies arboviruses with the potential to transmit to humans. Characterization of KUNDV and KARYV isolated from Hyalomma ticks is critical for the development of specific serological and molecular assays that can be used to determine the association of these viruses with disease in humans and livestock.


Asunto(s)
Coltivirus/clasificación , Coltivirus/aislamiento & purificación , Virus de la Fiebre Hemorrágica de Crimea-Congo/aislamiento & purificación , Fiebre Hemorrágica de Crimea/complicaciones , Orbivirus/clasificación , Orbivirus/aislamiento & purificación , Filogenia , Garrapatas/virología , Animales , Chlorocebus aethiops , Coltivirus/genética , Culicidae/virología , Genoma Viral , Virus de la Fiebre Hemorrágica de Crimea-Congo/clasificación , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , India , Mosquitos Vectores/virología , Orbivirus/genética , Reoviridae/clasificación , Reoviridae/genética , Reoviridae/aislamiento & purificación , Reoviridae/ultraestructura , Células Vero , Ensayo de Placa Viral , Proteínas Virales/genética
7.
Indian J Med Res ; 152(1 & 2): 70-76, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32773420

RESUMEN

BACKGROUND & OBJECTIVES: The genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), belonging to the family Coronaviridae, encodes for structural, non-structural, and accessory proteins, which are required for replication of the virus. These proteins are encoded by different genes present on the SARS-CoV-2 genome. The expression pattern of these genes in the host cells needs to be assessed. This study was undertaken to understand the transcription pattern of the SARS-CoV-2 genes in the Vero CCL-81 cells during the course of infection. METHODS: Vero CCL-81 cells were infected with the SARS-CoV-2 virus inoculum having a 0.1 multiplicity of infection. The supernatants and cell pellets were harvested after centrifugation at different time points, post-infection. The 50% tissue culture infective dose (TCID50)and cycle threshold (Ct) values of the E and the RdRp-2 genes were calculated. Next-generation sequencing of the harvested sample was carried out to observe the expression pattern of the virus by mapping to the SARS-CoV-2 Wuhan HU-1 reference sequence. The expressions were in terms of the reads per kilobase million (RPKM) values. RESULTS: In the inital six hours post-infection, the copy numbers of E and RdRp-2 genes were approximately constant, which raised 10 log-fold and continued to increase till the 12 h post-infection (hpi). The TCID50 was observed in the supernatant after 7 hpi, indicating the release of the viral progeny. ORF8 and ORF7a, along with the nucleocapsid transcript, were found to express at higher levels. INTERPRETATION & CONCLUSIONS: This study was a step towards understanding the growth kinetics of the SARS-CoV-2 replication cycle. The findings indicated that ORF8 and ORF7b gene transcripts were expressed in higher amounts indicating their essential role in viral replication. Future studies need to be conducted to explore their role in the SARS-CoV-2 replication.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/genética , Neumonía Viral/genética , Transcriptoma/genética , Animales , Betacoronavirus/patogenicidad , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Humanos , Pandemias , Neumonía Viral/patología , Neumonía Viral/virología , SARS-CoV-2 , Células Vero/virología , Replicación Viral/genética
8.
Indian J Med Res ; 151(2 & 3): 200-209, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32242873

RESUMEN

Background & objectives: Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has globally affected 195 countries. In India, suspected cases were screened for SARS-CoV-2 as per the advisory of the Ministry of Health and Family Welfare. The objective of this study was to characterize SARS-CoV-2 sequences from three identified positive cases as on February 29, 2020. Methods: Throat swab/nasal swab specimens for a total of 881 suspected cases were screened by E gene and confirmed by RdRp (1), RdRp (2) and N gene real-time reverse transcription-polymerase chain reactions and next-generation sequencing. Phylogenetic analysis, molecular characterization and prediction of B- and T-cell epitopes for Indian SARS-CoV-2 sequences were undertaken. Results: Three cases with a travel history from Wuhan, China, were confirmed positive for SARS-CoV-2. Almost complete (29,851 nucleotides) genomes of case 1, case 3 and a fragmented genome for case 2 were obtained. The sequences of Indian SARS-CoV-2 though not identical showed high (~99.98%) identity with Wuhan seafood market pneumonia virus (accession number: NC 045512). Phylogenetic analysis showed that the Indian sequences belonged to different clusters. Predicted linear B-cell epitopes were found to be concentrated in the S1 domain of spike protein, and a conformational epitope was identified in the receptor-binding domain. The predicted T-cell epitopes showed broad human leucocyte antigen allele coverage of A and B supertypes predominant in the Indian population. Interpretation & conclusions: The two SARS-CoV-2 sequences obtained from India represent two different introductions into the country. The genetic heterogeneity is as noted globally. The identified B- and T-cell epitopes may be considered suitable for future experiments towards the design of vaccines and diagnostics. Continuous monitoring and analysis of the sequences of new cases from India and the other affected countries would be vital to understand the genetic evolution and rates of substitution of the SARS-CoV-2.


Asunto(s)
Betacoronavirus/genética , Genoma Viral , COVID-19 , Infecciones por Coronavirus , Epítopos de Linfocito B/genética , Epítopos de Linfocito T/genética , Humanos , India , Modelos Moleculares , Pandemias , Filogenia , Neumonía Viral , Estructura Terciaria de Proteína , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética
9.
Indian J Med Res ; 151(2 & 3): 226-235, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32317409

RESUMEN

Background & objectives: Bats are considered to be the natural reservoir for many viruses, of which some are potential human pathogens. In India, an association of Pteropus medius bats with the Nipah virus was reported in the past. It is suspected that the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also has its association with bats. To assess the presence of CoVs in bats, we performed identification and characterization of bat CoV (BtCoV) in P. medius and Rousettus species from representative States in India, collected during 2018 and 2019. Methods: Representative rectal swab (RS) and throat swab specimens of Pteropus and Rousettus spp. bats were screened for CoVs using a pan-CoV reverse transcription-polymerase chain reaction (RT-PCR) targeting the RNA-dependent RNA polymerase (RdRp) gene. A single-step RT-PCR was performed on the RNA extracted from the bat specimens. Next-generation sequencing (NGS) was performed on a few representative bat specimens that were tested positive. Phylogenetic analysis was carried out on the partial sequences of RdRp gene sequences retrieved from both the bat species and complete viral genomes recovered from Rousettus spp. Results: Bat samples from the seven States were screened, and the RS specimens of eight Rousettus spp. and 21 Pteropus spp. were found positive for CoV RdRp gene. Among these, by Sanger sequencing, partial RdRp sequences could be retrieved from three Rousettus and eight Pteropus bat specimens. Phylogenetic analysis of the partial RdRp region demonstrated distinct subclustering of the BtCoV sequences retrieved from these Rousettus and Pteropus spp. bats. NGS led to the recovery of four sequences covering approximately 94.3 per cent of the whole genome of the BtCoVs from Rousettus bats. Three BtCoV sequences had 93.69 per cent identity to CoV BtRt-BetaCoV/GX2018. The fourth BtCoV sequence was 96.8 per cent identical to BtCoV HKU9-1. Interpretation & conclusions: This study was a step towards understanding the CoV circulation in Indian bats. Detection of potentially pathogenic CoVs in Indian bats stresses the need for enhanced screening for novel viruses in them. One Health approach with collaborative activities by the animal health and human health sectors in these surveillance activities shall be of use to public health. This would help in the development of diagnostic assays for novel viruses with outbreak potential and be useful in disease interventions. Proactive surveillance remains crucial for identifying the emerging novel viruses with epidemic potential and measures for risk mitigation.


Asunto(s)
Quirópteros/virología , Coronavirus/clasificación , Coronavirus/aislamiento & purificación , Genoma Viral , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , India , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Indian J Med Res ; 150(2): 186-193, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31670274

RESUMEN

Background & objectives: Kyasanur forest disease (KFD) is an infectious disease discovered in Karnataka State of India in 1957; since then, the State has been known to be enzootic for KFD. In the last few years, its presence was observed in the adjoining five States of the Western Ghats of India. The present study was conducted to understand the kinetics of viral RNA, immunoglobulin M (IgM) and IgG antibody in KFD-infected humans for developing a diagnostic algorithm for KFD. Methods: A prospective follow up study was performed among KFD patients in Sindhudurg district of Maharashtra State, India. A total of 1046 suspected patients were tested, and 72 KFD patients were enrolled and followed for 17 months (January 2016 to May 2017). Serum samples of KFD patients were screened for viral RNA, and IgM and IgG antibodies. Results: KFD viral positivity was observed from 1st to 18th post-onset day (POD). Positivity of anti-KFD virus (KFDV) IgM antibodies was detected from 4th till 122nd POD and anti-KFDV IgG antibodies detected from 5th till 474th POD. A prediction probability was determined from statistical analysis using the generalized additive model in R-software to support the laboratory findings regarding viral kinetics. Interpretation & conclusions: This study demonstrated the presence of KFD viral RNA till 18th POD, IgM antibodies till 122nd POD and IgG till the last sample collected. Based on our study an algorithm was recommended for accurate laboratory diagnosis of KFDV infection. A sample collected between 1 and 3 POD can be tested using KFDV real-time reverse transcriptase polymerase chain reaction (RT-PCR); between 4 and 24 POD, the combination of real-time RT-PCR and anti-KFDV IgM enzyme-linked immunosorbent assay (ELISA) tests can be used; between POD 25 and 132, anti-KFDV IgM and IgG ELISA are recommended.


Asunto(s)
Anticuerpos Antivirales/sangre , Ensayo de Inmunoadsorción Enzimática , Enfermedad del Bosque de Kyasanur/sangre , ARN Viral/química , Anticuerpos/sangre , Anticuerpos Antivirales/química , Brotes de Enfermedades , Virus de la Encefalitis Transmitidos por Garrapatas/aislamiento & purificación , Virus de la Encefalitis Transmitidos por Garrapatas/patogenicidad , Femenino , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/genética , Inmunoglobulina M/química , Inmunoglobulina M/genética , Cinética , Enfermedad del Bosque de Kyasanur/genética , Enfermedad del Bosque de Kyasanur/virología , Masculino , ARN Viral/genética
11.
Emerg Infect Dis ; 24(5): 898-901, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29664366

RESUMEN

A virus isolated from a sick horse from India in 2008 was confirmed by next-generation sequencing analysis to be equine encephalosis virus (EEV). EEV in India is concerning because several species of Culicoides midge, which play a major role in EEV natural maintenance and transmission, are present in this country.


Asunto(s)
Enfermedades de los Caballos/virología , Orbivirus/aislamiento & purificación , Infecciones por Reoviridae/veterinaria , Animales , Ceratopogonidae/virología , Enfermedades de los Caballos/epidemiología , Caballos , India/epidemiología , Orbivirus/genética , Filogenia , Infecciones por Reoviridae/epidemiología , Infecciones por Reoviridae/virología
12.
J Gen Virol ; 99(8): 991-1000, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29939123

RESUMEN

In 1954, a virus named Wad Medani virus (WMV) was isolated from Hyalomma marginatum ticks from Maharashtra State, India. In 1963, another virus was isolated from Sturnia pagodarum birds in Tamil Nadu, India, and named Kammavanpettai virus (KVPTV) based on the site of its isolation. Originally these virus isolates could not be identified with conventional methods. Here we describe next-generation sequencing studies leading to the determination of their complete genome sequences, and identification of both virus isolates as orbiviruses (family Reoviridae). Sequencing data showed that KVPTV has an AT-rich genome, whereas the genome of WMV is GC-rich. The size of the KVPTV genome is 18 234 nucleotides encoding proteins ranging 238-1290 amino acids (aa) in length. Similarly, the size of the WMV genome is 16 941 nucleotides encoding proteins ranging 214-1305 amino acids in length. Phylogenetic analysis of the VP1 gene, along with the capsid genes VP5 and VP7, revealed that KVPTV is likely a novel mosquito-borne virus and WMV is a tick-borne orbivirus. This study focuses on the phylogenetic comparison of these newly identified orbiviruses with mosquito-, tick- and Culicoides-borne orbiviruses isolated in India and other countries.


Asunto(s)
Culicidae/virología , Mosquitos Vectores/virología , Infecciones por Reoviridae/transmisión , Reoviridae/genética , Animales , Genoma Viral , India , Ratones , Filogenia
13.
J Biol Chem ; 291(18): 9458-68, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-26861881

RESUMEN

Sumoylation is a multistep, multienzymatic post-translational modification in which a small ubiquitin-like modifier protein (SUMO) is attached to the target. We present the first mathematical model for sumoylation including enzyme mechanism details such as autosumoylation of E2 and multifunctional nature of SENP. Simulations and analysis reveal three nonobvious properties for the long term response, modeled as an open system: (i) the steady state sumoylation level is robust to variation in several enzyme properties; (ii) even when autosumoylation of E2 results in equal or higher activity, the target sumoylation levels are lower; and (iii) there is an optimal SENP concentration at which steady state target sumoylation level is maximum. These results are qualitatively different for a short term response modeled as a closed system, where e.g. sumoylation always decreases with increasing SENP levels. Simulations with multiple targets suggest that the available SUMO is limiting, indicating a possible explanation for the experimentally observed low fractional sumoylation. We predict qualitative differences in system responses at short post-translational and longer transcriptional time scales. We thus use this mechanism-based model to explain system properties and generate testable hypotheses for existence and mechanism of unexpected responses.


Asunto(s)
Modelos Biológicos , Sumoilación/fisiología , Animales , Humanos
16.
RNA ; 21(3): 307-19, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25576498

RESUMEN

MicroRNAs bind to and regulate the abundance and activity of target messenger RNA through sequestration, enhanced degradation, and suppression of translation. Although miRNA have a predominantly negative effect on the target protein concentration, several reports have demonstrated a positive effect of miRNA, i.e., increase in target protein concentration on miRNA overexpression and decrease in target concentration on miRNA repression. miRNA-target pair-specific effects such as protection of mRNA degradation owing to miRNA binding can explain some of these effects. However, considering such pairs in isolation might be an oversimplification of the RNA biology, as it is known that one miRNA interacts with several targets, and conversely target mRNA are subject to regulation by several miRNAs. We formulate a mathematical model of this combinatorial regulation of targets by multiple miRNA. Through mathematical analysis and numerical simulations of this model, we show that miRNA that individually have a negative effect on their targets may exhibit an apparently positive net effect when the concentration of one miRNA is experimentally perturbed by repression/overexpression in such a multi-miRNA multitarget situation. We show that this apparent unexpected effect is due to competition and will not be observed when miRNA interact noncompetitively with the target mRNA. This result suggests that some of the observed unusual positive effects of miRNA may be due to the combinatorial complexity of the system rather than due to any inherently unusual positive effect of the miRNA on its target.


Asunto(s)
Regulación de la Expresión Génica/genética , MicroARNs/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , Artefactos , Modelos Teóricos , Biosíntesis de Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA