Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 17(6): e0268892, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35675346

RESUMEN

OBJECTIVE: Although geographically specific data can help target HIV prevention and treatment strategies, Nigeria relies on national- and state-level estimates for policymaking and intervention planning. We calculated sub-state estimates along the HIV continuum of care in Nigeria. DESIGN: Using data from the Nigeria HIV/AIDS Indicator and Impact Survey (NAIIS) (July-December 2018), we conducted a geospatial analysis estimating three key programmatic indicators: prevalence of HIV infection among adults (aged 15-64 years); antiretroviral therapy (ART) coverage among adults living with HIV; and viral load suppression (VLS) rate among adults living with HIV. METHODS: We used an ensemble modeling method called stacked generalization to analyze available covariates and a geostatistical model to incorporate the output from stacking as well as spatial autocorrelation in the modeled outcomes. Separate models were fitted for each indicator. Finally, we produced raster estimates of each indicator on an approximately 5×5-km grid and estimates at the sub-state/local government area (LGA) and state level. RESULTS: Estimates for all three indicators varied both within and between states. While state-level HIV prevalence ranged from 0.3% (95% uncertainty interval [UI]: 0.3%-0.5%]) to 4.3% (95% UI: 3.7%-4.9%), LGA prevalence ranged from 0.2% (95% UI: 0.1%-0.5%) to 8.5% (95% UI: 5.8%-12.2%). Although the range in ART coverage did not substantially differ at state level (25.6%-76.9%) and LGA level (21.9%-81.9%), the mean absolute difference in ART coverage between LGAs within states was 16.7 percentage points (range, 3.5-38.5 percentage points). States with large differences in ART coverage between LGAs also showed large differences in VLS-regardless of level of effective treatment coverage-indicating that state-level geographic targeting may be insufficient to address coverage gaps. CONCLUSION: Geospatial analysis across the HIV continuum of care can effectively highlight sub-state variation and identify areas that require further attention in order to achieve epidemic control. By generating local estimates, governments, donors, and other implementing partners will be better positioned to conduct targeted interventions and prioritize resource distribution.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , Adulto , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Infecciones por VIH/prevención & control , Humanos , Nigeria/epidemiología , Prevalencia , Carga Viral
2.
BMJ Glob Health ; 5(11)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33148539

RESUMEN

INTRODUCTION: Understanding how to deliver interventions more effectively is a growing emphasis in Global Health. Simultaneously, health system strengthening is a key component to improving delivery. As a result, it is challenging to evaluate programme implementation while reflecting real-world complexity. We present our experience in using a health systems modelling approach as part of a mixed-methods evaluation and describe applications of these models. METHODS: We developed a framework for how health systems translate financial inputs into health outcomes, with in-country and international experts. We collated available data to measure framework indicators and developed models for malaria in Democratic Republic of the Congo (DRC), and tuberculosis in Guatemala and Senegal using Bayesian structural equation modelling. We conducted several postmodelling analyses: measuring efficiency, assessing bottlenecks, understanding mediation, analysing the cascade of care and measuring subnational effectiveness. RESULTS: The DRC model indicated a strong relationship between shipment of commodities and utilisation thereof. In Guatemala, the strongest model coefficients were more evenly distributed. Results in Senegal varied most, but pathways related to community care had the strongest relationships. In DRC, we used model results to estimate the end-to-end cost of delivering commodities. In Guatemala, we used model results to identify potential bottlenecks and understand mediation. In Senegal, we used model results to identify potential weak links in the cascade of care, and explore subnationally. CONCLUSION: This study demonstrates a complementary modelling approach to traditional evaluation methods. Although these models have limitations, they can be applied in a variety of ways to gain greater insight into implementation and functioning of health service delivery.


Asunto(s)
Infecciones por VIH , Malaria , Tuberculosis , Teorema de Bayes , Infecciones por VIH/diagnóstico , Infecciones por VIH/epidemiología , Humanos , Malaria/epidemiología , Senegal/epidemiología , Tuberculosis/diagnóstico , Tuberculosis/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA