Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Dis ; 107(5): 1343-1354, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36350732

RESUMEN

Guaraná is indigenous to the Brazilian Amazon where it has cultural and agroeconomic significance. However, its cultivation is constrained by a disease termed oversprouting of guaraná caused by Fusarium decemcellulare, with yield losses reaching as high as 100%. The disease can affect different parts of the plant, causing floral hypertrophy and hyperplasia, stem galls, and oversprouting of vegetative buds. To date, no study has been conducted characterizing the genetic diversity and population structure of this pathogen. Here, we report genetic diversity and genetic structure among 224 isolates from eight guaraná production areas of Amazonas State, Brazil, that were genotyped using a set of 10 inter-simple-sequence repeat (ISSR) markers. Despite moderate gene diversity (Hexp = 0.21 to 0.32), genotypic diversity was at or near maximum (223 multilocus genotypes among 224 isolates). Population genetic analysis of the 10 ISSR marker fragments with STRUCTURE software identified two populations designated C1 and C2 within the F. decemcellulare collection from the eight sites. Likewise, UPGMA hierarchical clustering and discriminant analysis of principal components of the strains from guaraná resolved these same two groups. Analysis of molecular variance demonstrated that 71% of genetic diversity occurred within the C1 and C2 populations. A pairwise comparison of sampling sites for both genetic populations revealed that 59 of 66 were differentiated from one another (P < 0.05), and high and significant gene flow was detected only between sampling sites assigned to the same genetic population. The presence of MAT1-1 and MAT1-2 strains, in conjunction with the high genotypic diversity and no significant linkage disequilibrium, suggests that each population of F. decemcellulare might be undergoing sexual reproduction. Isolation by distance was not observed (R2 = 0.02885, P > 0.05), which suggests that human-mediated movement of seedlings may have played a role in shaping the F. decemcellulare genetic structure in Amazonas State, Brazil.


Asunto(s)
Paullinia , Enfermedades de las Plantas , Humanos , Brasil , Variación Genética , Genética de Población
2.
Phytopathology ; 112(6): 1284-1298, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34989594

RESUMEN

Recent studies on multiple continents indicate members of the Fusarium tricinctum species complex (FTSC) are emerging as prevalent pathogens of small-grain cereals, pulses, and other economically important crops. These understudied fusaria produce structurally diverse mycotoxins, among which enniatins (ENNs) and moniliformin (MON) are the most frequent and of greatest concern to food and feed safety. Herein a large survey of fusaria in the Fusarium Research Center and Agricultural Research Service culture collections was undertaken to assess species diversity and mycotoxin potential within the FTSC. A 151-strain collection originating from diverse hosts and substrates from different agroclimatic regions throughout the world was selected from 460 FTSC strains to represent the breadth of FTSC phylogenetic diversity. Evolutionary relationships inferred from a five-locus dataset, using maximum likelihood and parsimony, resolved the 151 strains as 24 phylogenetically distinct species, including nine that are new to science. Of the five genes analyzed, nearly full-length phosphate permease sequences contained the most phylogenetically informative characters, establishing its suitability for species-level phylogenetics within the FTSC. Fifteen of the species produced ENNs, MON, the sphingosine analog 2-amino-14,16-dimethyloctadecan-3-ol (AOD), and the toxic pigment aurofusarin (AUR) on a cracked corn kernel substrate. Interestingly, the five earliest diverging species in the FTSC phylogeny (i.e., F. iranicum, F. flocciferum, F. torulosum, and Fusarium spp. FTSC 8 and 24) failed to produce AOD and MON, but synthesized ENNs and/or AUR. Moreover, our reassessment of nine published phylogenetic studies on the FTSC identified 11 additional novel taxa, suggesting this complex comprises at least 36 species.


Asunto(s)
Fusarium , Micotoxinas , Grano Comestible , Fusarium/genética , Micotoxinas/genética , Filogenia , Enfermedades de las Plantas
3.
Phytopathology ; 112(4): 741-751, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34491796

RESUMEN

Fusarium graminearum is ranked among the five most destructive fungal pathogens that affect agroecosystems. It causes floral diseases in small grain cereals including wheat, barley, and oats, as well as maize and rice. We conducted a systematic review of peer-reviewed studies reporting species within the F. graminearum species complex (FGSC) and created two main data tables. The first contained summarized data from the articles including bibliographic, geographic, methodological (ID methods), host of origin and species, while the second data table contains information about the described strains such as publication, isolate code(s), host/substrate, year of isolation, geographical coordinates, species and trichothecene genotype. Analyses of the bibliographic data obtained from 123 publications from 2000 to 2021 by 498 unique authors and published in 40 journals are summarized. We describe the frequency of species and chemotypes for 16,274 strains for which geographical information was available, either provided as raw data or extracted from the publications, and sampled across six continents and 32 countries. The database and interactive interface are publicly available, allowing for searches, summarization, and mapping of strains according to several criteria including article, country, host, species and trichothecene genotype. The database will be updated as new articles are published and should be useful for guiding future surveys and exploring factors associated with species distribution such as climate and land use. Authors are encouraged to submit data at the strain level to the database, which is accessible at https://fgsc.netlify.app.


Asunto(s)
Fusarium , Tricotecenos , Grano Comestible/microbiología , Fusarium/genética , Enfermedades de las Plantas/microbiología
4.
Plant Dis ; 106(10): 2656-2662, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35412332

RESUMEN

Members of the Fusarium oxysporum complex are ubiquitous soilborne fungal pathogens causing wilt diseases in various plant hosts. Fusarium oxysporum (Fo) f. sp. cannabis was first reported causing wilt disease in hemp in Italy in 1962. To date, Fusarium wilt continues to cause concern in industrial and medicinal cannabis cultivation worldwide. During a 3-year period (2018 to 2021), Fo strains were isolated from medical cannabis plants (Cannabis sativa) exhibiting wilt symptoms that were cultivated in numerous commercial farms in Israel. A diverse set of these strains was subjected to molecular phylogenetic analyses to assess their genetic diversity and to compare them with other f. sp. cannabis isolates included in prior studies. Maximum likelihood bootstrap analysis of a partial translation elongation factor (TEF1) dataset, which included 24 f. sp. cannabis sequences, revealed that the 11 strains from Israel comprised five TEF1 haplotypes. Two of the haplotypes from Israel were identical to isolates previously reported from British Columbia and California and British Columbia and Ontario. Overall, the 24 f. sp. cannabis sequences included 12 unique TEF1 haplotypes. These were phylogenetically diverse, suggesting that pathogenicity to C. sativa may have evolved independently within the F. oxysporum complex. Pathogenicity tests of the Israeli strains were confirmed by Koch's postulates assays. Strains of the five different f. sp. cannabis TEF1 haplotypes all caused wilt in cannabis seedlings but with varying levels of aggressiveness. The same isolates that originated from asymptomatic infected mother plants were found in wilted cuttings indicating that the pathogen can be spread via propagation material.


Asunto(s)
Fusarium , Marihuana Medicinal , Israel , Factores de Elongación de Péptidos/genética , Filogenia , Enfermedades de las Plantas/microbiología , Plantas
5.
Plant Dis ; 106(6): 1597-1609, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34907805

RESUMEN

Accurate species-level identification of an etiological agent is crucial for disease diagnosis and management because knowing the agent's identity connects it with what is known about its host range, geographic distribution, and toxin production potential. This is particularly true in publishing peer-reviewed disease reports, where imprecise and/or incorrect identifications weaken the public knowledge base. This can be a daunting task for phytopathologists and other applied biologists that need to identify Fusarium in particular, because published and ongoing multilocus molecular systematic studies have highlighted several confounding issues. Paramount among these are: (i) this agriculturally and clinically important genus is currently estimated to comprise more than 400 phylogenetically distinct species (i.e., phylospecies), with more than 80% of these discovered within the past 25 years; (ii) approximately one-third of the phylospecies have not been formally described; (iii) morphology alone is inadequate to distinguish most of these species from one another; and (iv) the current rapid discovery of novel fusaria from pathogen surveys and accompanying impact on the taxonomic landscape is expected to continue well into the foreseeable future. To address the critical need for accurate pathogen identification, our research groups are focused on populating two web-accessible databases (FUSARIUM-ID v.3.0 and the nonredundant National Center for Biotechnology Information nucleotide collection that includes GenBank) with portions of three phylogenetically informative genes (i.e., TEF1, RPB1, and RPB2) that resolve at or near the species level in every Fusarium species. The objectives of this Special Report, and its companion in this issue (Torres-Cruz et al. 2022), are to provide a progress report on our efforts to populate these databases and to outline a set of best practices for DNA sequence-based identification of fusaria.


Asunto(s)
Fusarium , Secuencia de Bases , Fusarium/genética , Filogenia
6.
Plant Dis ; 106(2): 612-622, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34569826

RESUMEN

Mango malformation disease (MMD) caused by Fusarium spp. is an important limiting factor in most production areas worldwide. Fusarium mexicanum and F. pseudocircinatum have been reported as causing MMD in Mexico. These two pathogens also cause a similar disease in Swietenia macrophylla (big-leaf mahogany malformation disease) in central western Mexico, and F. pseudocircinatum was recently reported as causing malformation disease in Tabebuia rosea (rosy trumpet) in the same region. These studies suggest that additional plant species, including weeds, might be hosts of these pathogens. The role that weed hosts might have in the disease cycle is unknown. The objectives of this work were to recover Fusarium isolates from understory vegetation in mango orchards with MMD, identify the Fusarium isolates through DNA sequence data, and determine whether F. mexicanum is capable of inducing disease in the weedy legume Senna uniflora (oneleaf senna). Additional objectives in this work were to compare Fusarium isolates recovered from weeds and mango trees in the same orchards by characterizing their phylogenetic relationships, assessing in vitro production of mycotoxins, and identifying their mating type idiomorph. A total of 59 Fusarium isolates from five species complexes were recovered from apical and lateral buds from four weed species. Two of the species within the F. fujikuroi species complex are known to cause MMD in Mexico. Trichothecene production was detected in five isolates, including F. sulawense and F. irregulare in the F. incarnatum-equiseti species complex and F. boothii in the F. sambucinum species complex. Both mating types were present among mango and weed isolates. This is the first report of herbaceous hosts harboring Fusarium species that cause mango malformation in Mexico. The information provided should prove valuable for further study of the epidemiological role of weeds in MMD and help manage the disease.


Asunto(s)
Fusarium , Enfermedades de las Plantas/microbiología , Malezas/microbiología , Árboles/microbiología , Fusarium/genética , México , Filogenia
7.
Plant Dis ; 106(6): 1610-1616, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34879732

RESUMEN

Species within Fusarium are of global agricultural, medical, and food/feed safety concern and have been extensively characterized. However, accurate identification of species is challenging and usually requires DNA sequence data. FUSARIUM-ID (http://isolate.fusariumdb.org/blast.php) is a publicly available database designed to support the identification of Fusarium species using sequences of multiple phylogenetically informative loci, especially the highly informative ∼680-bp 5' portion of the translation elongation factor 1-alpha (TEF1) gene that has been adopted as the primary barcoding locus in the genus. However, FUSARIUM-ID v.1.0 and 2.0 had several limitations, including inconsistent metadata annotation for the archived sequences and poor representation of some species complexes and marker loci. Here, we present FUSARIUM-ID v.3.0, which provides the following improvements: (i) additional and updated annotation of metadata for isolates associated with each sequence, (ii) expanded taxon representation in the TEF1 sequence database, (iii) availability of the sequence database as a downloadable file to enable local BLAST queries, and (iv) a tutorial file for users to perform local BLAST searches using either freely available software, such as SequenceServer, BLAST+ executable in the command line, and Galaxy, or the proprietary Geneious software. FUSARIUM-ID will be updated on a regular basis by archiving sequences of TEF1 and other loci from newly identified species and greater in-depth sampling of currently recognized species.


Asunto(s)
Fusarium , ADN de Hongos/genética , Fusarium/genética , Filogenia
8.
Plant Dis ; 105(10): 2822-2829, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33904328

RESUMEN

Tabebuia rosea (rosy trumpet) is an economically important neotropical tree in Mexico that is highly valued for the quality of its wood, which is used for furniture, crafts, and packing, and for its use as an ornamental and shade tree in parks and gardens. During surveys conducted in the lower Balsas River Basin region in the states of Guerrero and Michoacán, symptoms of floral malformation were detected in T. rosea trees. The main objectives of this study were to describe this new disease, to determine its causal agent, and to identify it using DNA sequence data. A second set of objectives was to analyze the phylogenetic relationship of the causal agent to Fusarium spp. associated with Swietenia macrophylla trees with malformation surveyed in the same region and to compare mycotoxin production and the mating type idiomorphs of fusaria recovered from T. rosea and S. macrophylla. Tabebuia rosea showed malformed inflorescences with multiple tightly curled shoots and shortened internodes. A total of 31 Fusarium isolates recovered from symptomatic T. rosea (n = 20) and S. macrophylla (n = 11) trees were identified by molecular analysis as Fusarium pseudocircinatum. Pathogenicity tests showed that isolates of F. pseudocircinatum recovered from T. rosea induced malformation in inoculated T. rosea seedlings. Eighteen F. pseudocircinatum isolates were tested for their ability to produce mycotoxins and other secondary metabolites. Moniliformin, fusaric acid, bikaverin, beauvericin, aurofusarin. and 8-O-methylbostrycoidin were produced by at least one strain of the 18 isolates tested. A multiplex PCR assay for mating type idiomorph revealed that 22 F. pseudocircinatum isolates were MAT1-1 and that 9 were MAT1-2. Here, we report a new disease of T. rosea in Mexico caused by F. pseudocircinatum.


Asunto(s)
Fusarium , Enfermedades de las Plantas/microbiología , Tabebuia , Fusarium/genética , Fusarium/patogenicidad , México , Filogenia , Tabebuia/microbiología
9.
Fungal Genet Biol ; 144: 103466, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32956810

RESUMEN

Pseudoflower formation is arguably the rarest outcome of a plant-fungus interaction. Here we report on a novel putative floral mimicry system in which the pseudoflowers are composed entirely of fungal tissues in contrast to modified leaves documented in previous mimicry systems. Pseudoflowers on two perennial Xyris species (yellow-eyed grass, X. setigera and X. surinamensis) collected from savannas in Guyana were produced by Fusarium xyrophilum, a novel Fusarium species. These pseudoflowers mimic Xyris flowers in gross morphology and are ultraviolet reflective. Axenic cultures of F. xyrophilum produced two pigments that had fluorescence emission maxima in light ranges that trichromatic insects are sensitive to and volatiles known to attract insect pollinators. One of the volatiles emitted by F. xyrophilum cultures (i.e., 2-ethylhexanol) was also detected in the head space of X. laxifolia var. iridifolia flowers, a perennial species native to the New World. Results of microscopic and PCR analyses, combined with examination of gross morphology of the pseudoflowers, provide evidence that the fungus had established a systemic infection in both Xyris species, sterilized them and formed fungal pseudoflowers containing both mating type idiomorphs. Fusarium xyrophilum cultures also produced the auxin indole-3-acetic acid (IAA) and the cytokinin isopentenyl adenosine (iPR). Field observations revealed that pseudoflowers and Xyris flowers were both visited by bees. Together, the results suggest that F. xyrophilum pseudoflowers are a novel floral mimicry system that attracts insect pollinators, via visual and olfactory cues, into vectoring its conidia, which might facilitate outcrossing of this putatively heterothallic fungus and infection of previously uninfected plants.


Asunto(s)
Mimetismo Biológico , Flores/anatomía & histología , Fusarium/crecimiento & desarrollo , Poaceae/anatomía & histología , Flores/crecimiento & desarrollo , Fusarium/genética , Guyana , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Poaceae/genética , Polinización/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo
10.
Fungal Divers ; 104(1): 267-289, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33364917

RESUMEN

Early efforts to classify Mortierellaceae were based on macro- and micromorphology, but sequencing and phylogenetic studies with ribosomal DNA (rDNA) markers have demonstrated conflicting taxonomic groupings and polyphyletic genera. Although some taxonomic confusion in the family has been clarified, rDNA data alone is unable to resolve higher level phylogenetic relationships within Mortierellaceae. In this study, we applied two parallel approaches to resolve the Mortierellaceae phylogeny: low coverage genome (LCG) sequencing and high-throughput, multiplexed targeted amplicon sequencing to generate sequence data for multi-gene phylogenetics. We then combined our datasets to provide a well-supported genome-based phylogeny having broad sampling depth from the amplicon dataset. Resolving the Mortierellaceae phylogeny into monophyletic groups led to the definition of 14 genera, 7 of which are newly proposed. Low-coverage genome sequencing proved to be a relatively cost-effective means of generating a well-resolved phylogeny. The multi-gene phylogenetics approach enabled much greater sampling depth and breadth than the LCG approach, but was unable to resolve higher-level organization of groups. We present this work to resolve some of the taxonomic confusion and provide a genus-level framework to empower future studies on Mortierellaceae diversity, biology, and evolution.

11.
Plant Dis ; 103(8): 2070-2075, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31215854

RESUMEN

Numerous pathogen surveys have reported that diverse Fusarium spp. threaten soybean production in North and South America. However, little research has been conducted to characterize Fusarium pathogens of soybean in sub-Saharan Africa. Our objectives were to (i) identify Fusarium spp. isolated from discolored root segments of soybean grown in Ethiopia and Ghana using DNA sequence data, (ii) determine whether isolates nested in the Fusarium incarnatum-equiseti and F. sambucinum species complexes (FIESC and FSAMSC, respectively) produced trichothecene mycotoxins in vitro, and (iii) test these isolates for pathogenicity on soybean. Molecular phylogenetic analyses revealed that the trichothecene mycotoxin-producing isolates comprised three undescribed species within the FIESC and FSAMSC. Mycotoxin type B trichothecene 4,15-diacetylnivalenol or T-2 toxin and related type A neosolaniol trichothecenes were produced by 18 of the 21 isolates. Of the 12 isolates from Ethiopia and Ghana tested for their impact on seed germination, 5, comprising two undescribed phylospecies (i.e., Fusarium sp. number 3 and Fusarium sp. FIESC 2,) completely inhibited germination, whereas 4 caused no reduction in germination. Root lesions induced by all 12 isolates were greater than the uninoculated negative control. Additional variation among the isolates was reflected in differences (α = 0.05) in lesion lengths, which ranged from 34 to 67% of total root length. This is the first report characterizing FIESC and FSAMSC isolates from soybean roots in Ethiopia and Ghana.


Asunto(s)
Fusarium , Glycine max , Raíces de Plantas , Tricotecenos , Etiopía , Fusarium/clasificación , Fusarium/genética , Fusarium/patogenicidad , Ghana , Filogenia , Raíces de Plantas/microbiología , Glycine max/microbiología , Tricotecenos/metabolismo , Virulencia
12.
Annu Rev Microbiol ; 67: 399-416, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24024636

RESUMEN

Fusarium is a genus of filamentous fungi that contains many agronomically important plant pathogens, mycotoxin producers, and opportunistic human pathogens. Comparative analyses have revealed that the Fusarium genome is compartmentalized into regions responsible for primary metabolism and reproduction (core genome), and pathogen virulence, host specialization, and possibly other functions (adaptive genome). Genes involved in virulence and host specialization are located on pathogenicity chromosomes within strains pathogenic to tomato (Fusarium oxysporum f. sp. lycopersici) and pea (Fusarium 'solani' f. sp. pisi). The experimental transfer of pathogenicity chromosomes from F. oxysporum f. sp. lycopersici into a nonpathogen transformed the latter into a tomato pathogen. Thus, horizontal transfer may explain the polyphyletic origins of host specificity within the genus. Additional genome-scale comparative and functional studies are needed to elucidate the evolution and diversity of pathogenicity mechanisms, which may help inform novel disease management strategies against fusarial pathogens.


Asunto(s)
Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/patogenicidad , Genoma Fúngico , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fusarium/clasificación , Fusarium/metabolismo , Filogenia , Virulencia
13.
Fungal Genet Biol ; 103: 34-41, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28392426

RESUMEN

Surveys for crown rot (FCR) and head blight (FHB) of Algerian wheat conducted during 2014 and 2015 revealed that Fusarium culmorum strains producing 3-acetyl-deoxynivalenol (3ADON) or nivalenol (NIV) were the causal agents of these important diseases. Morphological identification of the isolates (n FCR=110, n FHB=30) was confirmed by sequencing a portion of TEF1. To assess mating type idiomorph, trichothecene chemotype potential and global population structure, the Algerian strains were compared with preliminary sample of F. culmorum from Italy (n=27), Australia (n=30) and the United States (n=28). A PCR assay for MAT idiomorph revealed that MAT1-1 and MAT1-2 strains were segregating in nearly equal proportions, except within Algeria where two-thirds of the strains were MAT1-2. An allele-specific PCR assay indicated that the 3ADON trichothecene genotype was predominant globally (83.8% 3ADON) and in each of the four countries sampled. In vitro toxin analyses confirmed trichothecene genotype PCR data and demonstrated that most of the strains tested (77%) produced culmorin. Global population genetic structure of 191 strains was assessed using nine microsatellite markers (SSRs). AMOVA of the clone corrected data indicated that 89% of the variation was within populations. Bayesian analysis of the SSR data identified two globally distributed, sympatric populations within which both trichothecene chemotypes and mating types were represented.


Asunto(s)
Fusarium/genética , Genética de Población , Micotoxinas/genética , Argelia , Fusarium/patogenicidad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Triticum/microbiología
14.
Phytopathology ; 107(4): 463-473, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27938244

RESUMEN

Fusarium oxysporum species complex (FOSC) isolates were obtained from celery with symptoms of Fusarium yellows between 1993 and 2013 primarily in California. Virulence tests and a two-gene dataset from 174 isolates indicated that virulent isolates collected before 2013 were a highly clonal population of F. oxysporum f. sp. apii race 2. In 2013, new highly virulent clonal isolates, designated race 4, were discovered in production fields in Camarillo, California. Long-read Illumina data were used to analyze 16 isolates: six race 2, one of each from races 1, 3, and 4, and seven genetically diverse FOSC that were isolated from symptomatic celery but are nonpathogenic on this host. Analyses of a 10-gene dataset comprising 38 kb indicated that F. oxysporum f. sp. apii is polyphyletic; race 2 is nested within clade 3, whereas the evolutionary origins of races 1, 3, and 4 are within clade 2. Based on 6,898 single nucleotide polymorphisms from the core FOSC genome, race 3 and the new highly virulent race 4 are highly similar with Nei's Da = 0.0019, suggesting that F. oxysporum f. sp. apii race 4 evolved from race 3. Next generation sequences were used to develop PCR primers that allow rapid diagnosis of races 2 and 4 in planta.


Asunto(s)
Apium/microbiología , Fusarium/genética , Variación Genética , Enfermedades de las Plantas/microbiología , California , Evolución Molecular , Fusarium/aislamiento & purificación , Fusarium/patogenicidad , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Virulencia
15.
Plant Dis ; 101(1): 150-157, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30682303

RESUMEN

Soybean sudden death syndrome (SDS) was detected in South Africa for the first time during pathogen surveys conducted in 2013 to 2014. The primary objective of this study was to characterize the 16 slow-growing Fusarium strains that were isolated from the roots of symptomatic plants. Molecular phylogenetic analyses of a portion of translation elongation factor 1-α (TEF1) and the nuclear ribosomal intergenic spacer region (IGS rDNA) indicated that the etiological agents were Fusarium brasiliense and a novel, undescribed Fusarium sp. This is the first report of F. brasiliense outside of Brazil and Argentina and the novel Fusarium sp. causing soybean SDS. Koch's postulates were completed for both fusaria on seven soybean cultivars that are commercially available in South Africa. Results of the pathogenicity experiment revealed that the strains of F. brasiliense and Fusarium sp. differed in aggressiveness to soybean, as reflected in differences in foliar symptoms, root rot, and reduction in shoot length. Cell-free culture filtrates of the two soybean SDS pathogens from South Africa and two positive control strains of F. virguliforme from the United States induced typical SDS symptoms on susceptible soybean cultivars in a whole-seedling assay, indicating that they contained phytotoxins.

16.
Plant Dis ; 101(1): 233-240, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30682305

RESUMEN

Asian Euwallacea ambrosia beetles vector Fusarium mutualists. The ambrosial fusaria are all members of the ambrosia Fusarium clade (AFC) within the Fusarium solani species complex (FSSC). Several Euwallacea-Fusarium mutualists have been introduced into nonnative regions and have caused varying degrees of damage to orchard, landscape, and forest trees. Knowledge of symbiont fidelity is limited by current identification methods, which typically requires analysis of DNA sequence data from beetles and the symbionts cultured from their oral mycangia. Here, polymerase chain reaction (PCR)-based diagnostic tools were developed to identify the six Fusarium symbionts of exotic Euwallacea spp. currently known within the United States. Whole-genome sequences were generated for representatives of six AFC species plus F. ambrosium and aligned to the annotated genome of F. euwallaceae. Taxon-specific primer-annealing sites were identified that rapidly distinguish the AFC species currently within the United States. PCR specificity, reliability, and sensitivity were validated using a panel of 72 Fusarium isolates, including 47 reference cultures. Culture-independent multiplex assays accurately identified two AFC fusaria using DNA isolated from heads of their respective beetle partners. The PCR assays were used to show that Euwallacea validus is exclusively associated with AF-4 throughout its sampled range within eastern North America. The rapid assay supports federal and state agency efforts to monitor spread of these invasive pests and mitigate further introductions.

17.
J Clin Microbiol ; 54(11): 2813-2819, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27605713

RESUMEN

Multilocus DNA sequence data were used to assess the genetic diversity and evolutionary relationships of 67 Fusarium strains from veterinary sources, most of which were from the United States. Molecular phylogenetic analyses revealed that the strains comprised 23 phylogenetically distinct species, all but two of which were previously known to infect humans, distributed among eight species complexes. The majority of the veterinary isolates (47/67 = 70.1%) were nested within the Fusarium solani species complex (FSSC), and these included 8 phylospecies and 33 unique 3-locus sequence types (STs). Three of the FSSC species (Fusarium falciforme, Fusarium keratoplasticum, and Fusarium sp. FSSC 12) accounted for four-fifths of the veterinary strains (38/47) and STs (27/33) within this clade. Most of the F. falciforme strains (12/15) were recovered from equine keratitis infections; however, strains of F. keratoplasticum and Fusarium sp. FSSC 12 were mostly (25/27) isolated from marine vertebrates and invertebrates. Our sampling suggests that the Fusarium incarnatum-equiseti species complex (FIESC), with eight mycoses-associated species, may represent the second most important clade of veterinary relevance within Fusarium Six of the multilocus STs within the FSSC (3+4-eee, 1-b, 12-a, 12-b, 12-f, and 12-h) and one each within the FIESC (1-a) and the Fusarium oxysporum species complex (ST-33) were widespread geographically, including three STs with transoceanic disjunctions. In conclusion, fusaria associated with veterinary mycoses are phylogenetically diverse and typically can only be identified to the species level using DNA sequence data from portions of one or more informative genes.


Asunto(s)
Fusariosis/veterinaria , Fusarium/aislamiento & purificación , Animales , Análisis por Conglomerados , Fusariosis/epidemiología , Fusariosis/microbiología , Fusarium/clasificación , Fusarium/genética , Epidemiología Molecular , Tipificación de Secuencias Multilocus , Filogenia , Homología de Secuencia , Estados Unidos
19.
Mycologia ; 108(1): 31-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26553777

RESUMEN

Morphological and molecular phylogenetic studies of true morels (Morchella) in the Canadian province of Newfoundland and Labrador resulted in the discovery of two undescribed species in the M. elata clade that we initially distinguished by the informal designations Mel-19 and Mel-36. The latter species, also collected in New Brunswick, Canada, is hitherto known only from the St Lawrence River Basin. Mel-36 is described here as a novel, phylogenetically distinct species, M. laurentiana. Before the discovery of Mel-19 in Newfoundland and Labrador, New Brunswick and Washington state it was only known from central China and central and northern Europe. Mel-19 is described here as a novel species, M. eohespera.


Asunto(s)
Ascomicetos/clasificación , Ascomicetos/citología , Ascomicetos/genética , Secuencia de Bases , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Geografía , Datos de Secuencia Molecular , Terranova y Labrador , Filogenia , Análisis de Secuencia de ADN
20.
Mycologia ; 108(4): 668-81, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27055569

RESUMEN

Canker disease of prickly ash (Zanthoxylum bungeanum) has caused a decline in the production of this economically important spice in northern China in the past 25 y. To identify the etiological agent, 38 fungal isolates were recovered from symptomatic tissues from trees in five provinces in China. These isolates were identified by conducting BLASTN queries of NCBI GenBank and phylogenetic analyses of DNA sequence data from the nuclear ribosomal internal transcribed spacer region (ITS rDNA), a portion of the translation elongation factor 1-α (TEF1) gene, and genes encoding RNA polymerase II largest (RPB1) and second largest (RPB2) subunits. Results of these analyses suggested that 30/38 isolates belonged to two novel fusaria most closely related to the Florida torreya (Torreya taxifolia Arn.) pathogen, Fusarium torreyae in Florida and Georgia. These three canker-inducing tree pathogens form a novel clade within Fusarium here designated the F. torreyae species complex (FTOSC). BLASTN queries of GenBank also revealed that 5/38 isolates recovered from cankers represented an undescribed phylogenetic species within the F. solani species complex (FSSC) designated FSSC 6. Stem inoculations of three fusaria on Z. bungeanum resulted in consistent canker symptoms from which these three fusaria were recovered. The two novel fusaria, however, induced significantly larger lesions than FSSC 6. Herein, the two novel prickly ash pathogens are formally described as F. zanthoxyli and F. continuum.


Asunto(s)
Fusarium/clasificación , Fusarium/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Zanthoxylum/microbiología , China , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , ADN de Plantas/química , ADN de Plantas/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Fusarium/genética , Datos de Secuencia Molecular , Factor 1 de Elongación Peptídica/genética , Filogenia , ARN Polimerasa II/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA