RESUMEN
The protein complexes of the mitochondrial electron transport chain exist in isolation and in higher order assemblies termed supercomplexes (SCs) or respirasomes (SC I+III2+IV). The association of complexes I, III and IV into the respirasome is regulated by unknown mechanisms. Here, we designed a nanoluciferase complementation reporter for complex III and IV proximity to determine in vivo respirasome levels. In a chemical screen, we found that inhibitors of the de novo pyrimidine synthesis enzyme dihydroorotate dehydrogenase (DHODH) potently increased respirasome assembly and activity. By-passing DHODH inhibition via uridine supplementation decreases SC assembly by altering mitochondrial phospholipid composition, specifically elevated peroxisomal-derived ether phospholipids. Cell growth rates upon DHODH inhibition depend on ether lipid synthesis and SC assembly. These data reveal that nucleotide pools signal to peroxisomes to modulate synthesis and transport of ether phospholipids to mitochondria for SC assembly, which are necessary for optimal cell growth in conditions of nucleotide limitation.
Asunto(s)
Transporte de Electrón , Nucleótidos/química , Peroxisomas/química , Fosfolípidos/química , Dihidroorotato Deshidrogenasa , Transporte de Electrón/genética , Complejo III de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lípidos/biosíntesis , Metabolómica , Mitocondrias/metabolismo , Estructura Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Consumo de Oxígeno , Éteres Fosfolípidos , Uridina/metabolismoRESUMEN
The architecture of cristae provides a spatial mitochondrial organization that contains functional respiratory complexes. Several protein components including OPA1 and MICOS complex subunits organize cristae structure, but upstream regulatory mechanisms are largely unknown. Here, in vivo and in vitro reconstitution experiments show that the endoplasmic reticulum (ER) kinase PERK promotes cristae formation by increasing TOM70-assisted mitochondrial import of MIC19, a critical subunit of the MICOS complex. Cold stress or ß-adrenergic stimulation activates PERK that phosphorylates O-linked N-acetylglucosamine transferase (OGT). Phosphorylated OGT glycosylates TOM70 on Ser94, enhancing MIC19 protein import into mitochondria and promoting cristae formation and respiration. In addition, PERK-activated OGT O-GlcNAcylates and attenuates CK2α activity, which mediates TOM70 Ser94 phosphorylation and decreases MIC19 mitochondrial protein import. We have identified a cold-stress inter-organelle PERK-OGT-TOM70 axis that increases cell respiration through mitochondrial protein import and subsequent cristae formation. These studies have significant implications in cellular bioenergetics and adaptations to stress conditions.
Asunto(s)
Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , eIF-2 Quinasa/metabolismo , Adipocitos Marrones/citología , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/metabolismo , Animales , Quinasa de la Caseína II/metabolismo , Frío , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Glicosilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/genética , Proteínas Mitocondriales/genética , N-Acetilglucosaminiltransferasas/genética , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , ARN Guía de Kinetoplastida/metabolismo , eIF-2 Quinasa/antagonistas & inhibidores , eIF-2 Quinasa/deficiencia , eIF-2 Quinasa/genéticaRESUMEN
Mitochondrial diseases (MDs) are a heterogeneous group of disorders resulting from mutations in nuclear or mitochondrial DNA genes encoding mitochondrial proteins1,2. MDs cause pathologies with severe tissue damage and ultimately death3,4. There are no cures for MDs and current treatments are only palliative5-7. Here we show that tetracyclines improve fitness of cultured MD cells and ameliorate disease in a mouse model of Leigh syndrome. To identify small molecules that prevent cellular damage and death under nutrient stress conditions, we conduct a chemical high-throughput screen with cells carrying human MD mutations and discover a series of antibiotics that maintain survival of various MD cells. We subsequently show that a sub-library of tetracycline analogues, including doxycycline, rescues cell death and inflammatory signatures in mutant cells through partial and selective inhibition of mitochondrial translation, resulting in an ATF4-independent mitohormetic response. Doxycycline treatment strongly promotes fitness and survival of Ndufs4-/- mice, a preclinical Leigh syndrome mouse model8. A proteomic analysis of brain tissue reveals that doxycycline treatment largely prevents neuronal death and the accumulation of neuroimmune and inflammatory proteins in Ndufs4-/- mice, indicating a potential causal role for these proteins in the brain pathology. Our findings suggest that tetracyclines deserve further evaluation as potential drugs for the treatment of MDs.