Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Hum Mol Genet ; 32(20): 3006-3025, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37535888

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the HD gene, coding for huntingtin protein (HTT). Mechanisms of HD cellular pathogenesis remain undefined and likely involve disruptions in many cellular processes and functions presumably mediated by abnormal protein interactions of mutant HTT. We previously found HTT interaction with several protein arginine methyl-transferase (PRMT) enzymes. Protein arginine methylation mediated by PRMT enzymes is an important post-translational modification with an emerging role in neurodegeneration. We found that normal (but not mutant) HTT can facilitate the activity of PRMTs in vitro and the formation of arginine methylation complexes. These interactions appear to be disrupted in HD neurons. This suggests an additional functional role for HTT/PRMT interactions, not limited to substrate/enzyme relationship, which may result in global changes in arginine protein methylation in HD. Our quantitative analysis of striatal precursor neuron proteome indicated that arginine protein methylation is significantly altered in HD. We identified a cluster highly enriched in RNA-binding proteins with reduced arginine methylation, which is essential to their function in RNA processing and splicing. We found that several of these proteins interact with HTT, and their RNA-binding and localization are affected in HD cells likely due to a compromised arginine methylation and/or abnormal interactions with mutant HTT. These studies reveal a potential new mechanism for disruption of RNA processing in HD, involving a direct interaction of HTT with methyl-transferase enzymes and modulation of their activity and highlighting methylation of arginine as potential new therapeutic target for HD.

2.
J Immunol ; 211(4): 612-625, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37405694

RESUMEN

Dendritic cells bridge the innate and adaptive immune responses by serving as sensors of infection and as the primary APCs responsible for the initiation of the T cell response against invading pathogens. The naive T cell activation requires the following three key signals to be delivered from dendritic cells: engagement of the TCR by peptide Ags bound to MHC molecules (signal 1), engagement of costimulatory molecules on both cell types (signal 2), and expression of polarizing cytokines (signal 3). Initial interactions between Borrelia burgdorferi, the causative agent of Lyme disease, and dendritic cells remain largely unexplored. To address this gap in knowledge, we cultured live B. burgdorferi with monocyte-derived dendritic cells (mo-DCs) from healthy donors to examine the bacterial immunopeptidome associated with HLA-DR. In parallel, we examined changes in the expression of key costimulatory and regulatory molecules as well as profiled the cytokines released by dendritic cells when exposed to live spirochetes. RNA-sequencing studies on B. burgdorferi-pulsed dendritic cells show a unique gene expression signature associated with B. burgdorferi stimulation that differs from stimulation with lipoteichoic acid, a TLR2 agonist. These studies revealed that exposure of mo-DCs to live B. burgdorferi drives the expression of both pro- and anti-inflammatory cytokines as well as immunoregulatory molecules (e.g., PD-L1, IDO1, Tim3). Collectively, these studies indicate that the interaction of live B. burgdorferi with mo-DCs promotes a unique mature DC phenotype that likely impacts the nature of the adaptive T cell response generated in human Lyme disease.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Humanos , Células Dendríticas , Linfocitos T/metabolismo , Citocinas/metabolismo
3.
J Am Chem Soc ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38887845

RESUMEN

Gangliosides, sialic acid bearing glycosphingolipids, are components of the outer leaflet of plasma membranes of all vertebrate cells. They contribute to cell regulation by interacting with proteins in their own membranes (cis) or their extracellular milieu (trans). As amphipathic membrane constituents, gangliosides present challenges for identifying their ganglioside protein interactome. To meet these challenges, we synthesized bifunctional clickable photoaffinity gangliosides, delivered them to plasma membranes of cultured cells, then captured and identified their interactomes using proteomic mass spectrometry. Installing probes on ganglioside lipid and glycan moieties, we captured cis and trans ganglioside-protein interactions. Ganglioside interactomes varied with the ganglioside structure, cell type, and site of the probe (lipid or glycan). Gene ontology revealed that gangliosides engage with transmembrane transporters and cell adhesion proteins including integrins, cadherins, and laminins. The approach developed is applicable to other gangliosides and cell types, promising to provide insights into molecular and cellular regulation by gangliosides.

4.
Hum Mol Genet ; 31(10): 1651-1672, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34888656

RESUMEN

Huntington's disease (HD) is an incurable neurodegenerative disorder caused by a CAG expansion in the huntingtin gene (HTT). Post-translational modifications of huntingtin protein (HTT), such as phosphorylation, acetylation and ubiquitination, have been implicated in HD pathogenesis. Arginine methylation/dimethylation is an important modification with an emerging role in neurodegeneration; however, arginine methylation of HTT remains largely unexplored. Here we report nearly two dozen novel arginine methylation/dimethylation sites on the endogenous HTT from human and mouse brain and human cells suggested by mass spectrometry with data-dependent acquisition. Targeted quantitative mass spectrometry identified differential arginine methylation at specific sites in HD patient-derived striatal precursor cell lines compared to normal controls. We found that HTT can interact with several type I protein arginine methyltransferases (PRMTs) via its N-terminal domain. Using a combination of in vitro methylation and cell-based experiments, we identified PRMT4 (CARM1) and PRMT6 as major enzymes methylating HTT at specific arginines. Alterations of these methylation sites had a profound effect on biochemical properties of HTT rendering it less soluble in cells and affected its liquid-liquid phase separation and phase transition patterns in vitro. We found that expanded HTT 1-586 fragment can form liquid-like assemblies, which converted into solid-like assemblies when the R200/205 methylation sites were altered. Methyl-null alterations increased HTT toxicity to neuronal cells, while overexpression of PRMT 4 and 6 was beneficial for neuronal survival. Thus, arginine methylation pathways that involve specific HTT-modifying PRMT enzymes and modulate HTT biochemical and toxic properties could provide targets for HD-modifying therapies.


Asunto(s)
Arginina , Enfermedad de Huntington , Animales , Arginina/genética , Arginina/metabolismo , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/patología , Metilación , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Solubilidad
5.
Anal Biochem ; 678: 115262, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37507081

RESUMEN

Thousands of mammalian intracellular proteins are dynamically modified by O-linked ß-N-acetylglucosamine (O-GlcNAc). Global changes in O-GlcNAcylation have been associated with the development of cardiomyopathy, heart failure, hypertension, and neurodegenerative disease. Levels of O-GlcNAc in cells and tissues can be detected using numerous approaches; however, immunoblotting using GlcNAc-specific antibodies and lectins is commonplace. The goal of this study was to optimize the detection of O-GlcNAc in heart lysates by immunoblotting. Using a combination of tissue fractionation, immunoblotting, and galactosyltransferase labeling, as well as hearts from wild-type and O-GlcNAc transferase transgenic mice, we demonstrate that contractile proteins in the heart are differentially detected by two commercially available antibodies (CTD110.6 and RL2). As CTD110.6 displays poor reactivity toward contractile proteins, and as these proteins represent a major fraction of the heart proteome, a better assessment of cardiac O-GlcNAcylation is obtained in total tissue lysates with RL2. The data presented highlight tissue lysis approaches that should aid the assessment of the cardiac O-GlcNAcylation by immunoblotting.


Asunto(s)
Enfermedades Neurodegenerativas , Ratones , Animales , Anticuerpos/metabolismo , Proteoma/metabolismo , Corazón , Proteínas Contráctiles/metabolismo , Acetilglucosamina , Procesamiento Proteico-Postraduccional , Mamíferos/metabolismo
6.
Chem Res Toxicol ; 34(4): 1183-1196, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33793228

RESUMEN

Outdoor air pollution, a spatially and temporally complex mixture, is a human carcinogen. However, ambient measurements may not reflect subject-level exposures, personal monitors do not assess internal dose, and spot assessments of urinary biomarkers may not recapitulate chronic exposures. Nucleophilic sites in serum albumin-particularly the free thiol at Cys34-form adducts with electrophiles. Due to the 4-week lifetime of albumin in circulation, accumulating adducts can serve as intermediate- to long-residence biomarkers of chronic exposure and implicate potential biological effects. Employing nanoflow liquid chromatography-high-resolution mass spectrometry (nLC-HRMS) and parallel reaction monitoring (PRM), we have developed and validated a novel targeted albumin adductomics platform capable of simultaneously monitoring dozens of Cys34 adducts per sample in only 2.5 µL of serum, with on-column limits of detection in the low-femtomolar range. Using this platform, we characterized the magnitude and impact of ambient outdoor air pollution exposures with three repeated measurements over 84 days in n = 26 nonsmoking women (n = 78 total samples) from Qidong, China, an area with a rising burden of lung cancer incidence. In concordance with seasonally rising ambient concentrations of NO2, SO2, and PM10 measured at stationary monitors, we observed elevations in concentrations of Cys34 adducts of benzoquinone (p < 0.05), benzene diol epoxide (BDE; p < 0.05), crotonaldehyde (p < 0.01), and oxidation (p < 0.001). Regression analysis revealed significant elevations in oxidation and BDE adduct concentrations of 300% to nearly 700% per doubling of ambient airborne pollutant levels (p < 0.05). Notably, the ratio of irreversibly oxidized to reduced Cys34 rose more than 3-fold during the 84-day period, revealing a dramatic perturbation of serum redox balance and potentially serving as a portent of increased pollution-related mortality risk. Our targeted albumin adductomics assay represents a novel and flexible approach for sensitive and multiplexed internal dosimetry of environmental exposures, providing a new strategy for personalized biomonitoring and prevention.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo Biológico , Carcinógenos/análisis , Albúmina Sérica/análisis , Humanos , Estructura Molecular
7.
J Biol Chem ; 294(27): 10471-10489, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31118223

RESUMEN

Melanins are synthesized macromolecules that are found in all biological kingdoms. These pigments have a myriad of roles that range from microbial virulence to key components of the innate immune response in invertebrates. Melanins also exhibit unique properties with potential applications in physics and material sciences, ranging from electrical batteries to novel therapeutics. In the fungi, melanins, such as eumelanins, are components of the cell wall that provide protection against biotic and abiotic elements. Elucidation of the smallest fungal cell wall-associated melanin unit that serves as a building block is critical to understand the architecture of these polymers, its interaction with surrounding components, and their functional versatility. In this study, we used isopycnic gradient sedimentation, NMR, EPR, high-resolution microscopy, and proteomics to analyze the melanin in the cell wall of the human pathogenic fungus Cryptococcus neoformans We observed that melanin is assembled into the cryptococcal cell wall in spherical structures ∼200 nm in diameter, termed melanin granules, which are in turn composed of nanospheres ∼30 nm in diameter, termed fungal melanosomes. We noted that melanin granules are closely associated with proteins that may play critical roles in the fungal melanogenesis and the supramolecular structure of this polymer. Using this structural information, we propose a model for C. neoformans' melanization that is similar to the process used in animal melanization and is consistent with the phylogenetic relatedness of the fungal and animal kingdoms.


Asunto(s)
Pared Celular/metabolismo , Cryptococcus neoformans/metabolismo , Melaninas/química , Cryptococcus neoformans/clasificación , Levodopa/química , Espectroscopía de Resonancia Magnética , Melaninas/análisis , Melaninas/metabolismo , Microscopía Electrónica de Transmisión , Nanopartículas/química , Tamaño de la Partícula , Filogenia , Proteómica
8.
Mol Cell Biochem ; 463(1-2): 13-31, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31541353

RESUMEN

Insulin stimulates de novo lipid synthesis in the liver and in cultured hepatocytes via its ability to activate sterol regulatory element-binding protein 1c (SREBP-1c). Although PI3K-AKT-mTORC1-p70S6K-signaling kinases are known to drive feed-forward expression of SREBP-1c, the identity of the phosphorylated amino acid residue(s) putatively involved in insulin-stimulated de novo lipogenesis remains elusive. We obtained in silico and mass spectrometry evidence, that was combined with siRNA strategies, to discover that insulin-induced phosphorylation of serine 418, serine 419, and serine 422 in rat SREBP-1c was most likely mediated by p70S6 kinase. Here, for the first time, we show that insulin-induced phosphorylation of these 3 serine residues mainly impinged on the mechanisms of proteostasis of both full-length and mature SREBP-1c in the McArdle-RH7777 hepatoma cells. Consistent with this conclusion, nascent SREBP-1c, substituted with phosphomimetic aspartic acid residues at these 3 sites, was resistant to proteasomal degradation. As a consequence, endoplasmic reticulum to Golgi migration and proteolytic maturation of pSREBP-1c was significantly enhanced which led to increased accumulation of mature nSREBP-1c, even in the absence of insulin. Remarkably, aspartic acid substitutions at S418, S419 and S422 also protected the nascent SREBP-1c from ubiquitin-mediated proteasome degradation thus increasing its steady-state levels and transactivation potential in the nucleus. These complementary effects of p70S6K-mediated phosphorylation on proteostasis of pSREBP-1c were necessary and sufficient to account for insulin's ability to enhance transcription of genes controlling de novo lipogenesis in hepatocytes.


Asunto(s)
Hepatocitos/metabolismo , Lípidos/biosíntesis , Lipogénesis , Proteostasis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular Tumoral , Hepatocitos/citología , Humanos , Lípidos/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Serina-Treonina Quinasas TOR/genética , Transcripción Genética
9.
J Biol Chem ; 292(16): 6493-6511, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28232487

RESUMEN

The dynamic post-translational modification O-linked ß-N-acetylglucosamine (O-GlcNAc) regulates thousands of nuclear, cytoplasmic, and mitochondrial proteins. Cellular stress, including oxidative stress, results in increased O-GlcNAcylation of numerous proteins, and this increase is thought to promote cell survival. The mechanisms by which the O-GlcNAc transferase (OGT) and the O-GlcNAcase (OGA), the enzymes that add and remove O-GlcNAc, respectively, are regulated during oxidative stress to alter O-GlcNAcylation are not fully characterized. Here, we demonstrate that oxidative stress leads to elevated O-GlcNAc levels in U2OS cells but has little impact on the activity of OGT. In contrast, the expression and activity of OGA are enhanced. We hypothesized that this seeming paradox could be explained by proteins that bind to and control the local activity or substrate targeting of OGA, thereby resulting in the observed stress-induced elevations of O-GlcNAc. To identify potential protein partners, we utilized BioID proximity biotinylation in combination with stable isotopic labeling of amino acids in cell culture (SILAC). This analysis revealed 90 OGA-interacting partners, many of which exhibited increased binding to OGA upon stress. The associations of OGA with fatty acid synthase (FAS), filamin-A, heat shock cognate 70-kDa protein, and OGT were confirmed by co-immunoprecipitation. The pool of OGA bound to FAS demonstrated a substantial (∼85%) reduction in specific activity, suggesting that FAS inhibits OGA. Consistent with this observation, FAS overexpression augmented stress-induced O-GlcNAcylation. Although the mechanism by which FAS sequesters OGA remains unknown, these data suggest that FAS fine-tunes the cell's response to stress and injury by remodeling cellular O-GlcNAcylation.


Asunto(s)
Ácido Graso Sintasas/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Estrés Oxidativo , Animales , Biotinilación , Catálisis , Dominio Catalítico , Línea Celular Tumoral , Filaminas/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Glicoproteínas/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Humanos , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteómica , Transducción de Señal , Espectrometría de Masas en Tándem
10.
J Proteome Res ; 16(8): 2692-2708, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28653853

RESUMEN

Post-translational modifications (PTMs) of proteins regulate various cellular processes. PTMs of polyglutamine-expanded huntingtin (Htt) protein, which causes Huntington's disease (HD), are likely modulators of HD pathogenesis. Previous studies have identified and characterized several PTMs on exogenously expressed Htt fragments, but none of them were designed to systematically characterize PTMs on the endogenous full-length Htt protein. We found that full-length endogenous Htt, which was immunoprecipitated from HD knock-in mouse and human post-mortem brain, is suitable for detection of PTMs by mass spectrometry. Using label-free and mass tag labeling-based approaches, we identified near 40 PTMs, of which half are novel (data are available via ProteomeXchange with identifier PXD005753). Most PTMs were located in clusters within predicted unstructured domains rather than within the predicted α-helical structured HEAT repeats. Using quantitative mass spectrometry, we detected significant differences in the stoichiometry of several PTMs between HD and WT mouse brain. The mass-spectrometry identification and quantitation were verified using phospho-specific antibodies for selected PTMs. To further validate our findings, we introduced individual PTM alterations within full-length Htt and identified several PTMs that can modulate its subcellular localization in striatal cells. These findings will be instrumental in further assembling the Htt PTM framework and highlight several PTMs as potential therapeutic targets for HD.


Asunto(s)
Proteína Huntingtina/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Encéfalo/metabolismo , Química Encefálica , Cuerpo Estriado/patología , Humanos , Proteína Huntingtina/química , Enfermedad de Huntington/patología , Espectrometría de Masas/métodos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Péptido Hidrolasas/química , Fosforilación , Dominios Proteicos
11.
J Proteome Res ; 15(12): 4318-4336, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27669760

RESUMEN

O-Linked N-acetyl-ß-d-glucosamine (O-GlcNAc) is a dynamic post-translational modification that modifies and regulates over 3000 nuclear, cytoplasmic, and mitochondrial proteins. Upon exposure to stress and injury, cells and tissues increase the O-GlcNAc modification, or O-GlcNAcylation, of numerous proteins promoting the cellular stress response and thus survival. The aim of this study was to identify proteins that are differentially O-GlcNAcylated upon acute oxidative stress (H2O2) to provide insight into the mechanisms by which O-GlcNAc promotes survival. We achieved this goal by employing Stable Isotope Labeling of Amino Acids in Cell Culture (SILAC) and a novel "G5-lectibody" immunoprecipitation strategy that combines four O-GlcNAc-specific antibodies (CTD110.6, RL2, HGAC39, and HGAC85) and the lectin WGA. Using the G5-lectibody column in combination with basic reversed phase chromatography and C18 RPLC-MS/MS, 990 proteins were identified and quantified. Hundreds of proteins that were identified demonstrated increased (>250) or decreased (>110) association with the G5-lectibody column upon oxidative stress, of which we validated the O-GlcNAcylation status of 24 proteins. Analysis of proteins with altered glycosylation suggests that stress-induced changes in O-GlcNAcylation cluster into pathways known to regulate the cell's response to injury and include protein folding, transcriptional regulation, epigenetics, and proteins involved in RNA biogenesis. Together, these data suggest that stress-induced O-GlcNAcylation regulates numerous and diverse cellular pathways to promote cell and tissue survival.


Asunto(s)
Acetilglucosamina/metabolismo , Supervivencia Celular , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Acetilglucosamina/inmunología , Acilación , Animales , Anticuerpos , Cromatografía de Fase Inversa , Humanos , Peróxido de Hidrógeno/farmacología , Inmunoprecipitación , Marcaje Isotópico , Lectinas/inmunología , Estrés Oxidativo/efectos de los fármacos , Proteoma/análisis
12.
Proteomics ; 15(2-3): 591-607, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25263469

RESUMEN

The modification of intracellular proteins by monosaccharides of O-linked ß-N-acetylglucosamine (O-GlcNAc) is an essential and dynamic PTM of metazoans. The addition and removal of O-GlcNAc is catalyzed by the O-GlcNAc transferase (OGT) and O-GlcNAcase, respectively. One mechanism by which O-GlcNAc is thought to mediate proteins is by regulating phosphorylation. To provide insight into the pathways regulated by O-GlcNAc, we have utilized SILAC-based quantitative proteomics to carry out comparisons of site-specific phosphorylation in OGT wild-type and Null cells. Quantitation of the phosphoproteome demonstrated that of 5529 phosphoserine, phosphothreonine, and phosphotyrosine sites, 232 phosphosites were upregulated and 133 downregulated in the absence of O-GlcNAc. Collectively, these data suggest that deletion of OGT has a profound effect on the phosphorylation of cell cycle and DNA damage response proteins. Key events were confirmed by biochemical analyses and demonstrate an increase in the activating autophosphorylation event on ATM (Ser1987) and on ATM's downstream targets p53, H2AX, and Chk2. Together, these data support widespread changes in the phosphoproteome upon removal of O-GlcNAc, suggesting that O-GlcNAc regulates processes such as the cell cycle, genomic stability, and lysosomal biogenesis. All MS data have been deposited in the ProteomeXchange with identifier PXD001153 (http://proteomecentral.proteomexchange.org/dataset/PXD001153).


Asunto(s)
Daño del ADN , N-Acetilglucosaminiltransferasas/metabolismo , Fosfopéptidos/análisis , Proteínas/metabolismo , Transducción de Señal , Acetilglucosamina/metabolismo , Secuencia de Aminoácidos , Ciclo Celular , Línea Celular , Eliminación de Gen , Glicosilación , Humanos , Datos de Secuencia Molecular , N-Acetilglucosaminiltransferasas/genética , Fosfopéptidos/metabolismo , Fosforilación , Proteínas/química , Proteómica , Espectrometría de Masas en Tándem
13.
J Proteome Res ; 14(4): 1645-56, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25734908

RESUMEN

Cellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a phylogenetically conserved, ubiquitous enzyme that plays an indispensable role in energy metabolism. Although a wealth of information is available on cellular GAPDH, there is a clear paucity of data on its extracellular counterpart (i.e., the secreted or extracellular GAPDH). Here, we show that the extracellular GAPDH in human serum is a multimeric, high-molecular-weight, yet glycolytically active enzyme. The high-molecular-weight multimers of serum GAPDH were identified by immunodetection on one- and two-dimensional gel electrophoresis using multiple antibodies specific for various epitopes of GAPDH. Partial purification of serum GAPDH by DEAE Affigel affinity/ion exchange chromatography further established the multimeric composition of serum GAPDH. In vitro data demonstrated that human cell lines secrete a multimeric, high-molecular-weight enzyme similar to that of serum GAPDH. Furthermore, LC-MS/MS analysis of extracellular GAPDH from human cell lines confirmed the presence of unique peptides of GAPDH in the high-molecular-weight subunits. Furthermore, data from pulse-chase experiments established the presence of high-molecular-weight subunits in the secreted, extracellular GAPDH. Taken together, our findings demonstrate the presence of a high-molecular-weight, enzymatically active secretory GAPDH in human serum that may have a hitherto unknown function in humans.


Asunto(s)
Líquido Extracelular/enzimología , Gliceraldehído-3-Fosfato Deshidrogenasas/análisis , Suero/enzimología , Secuencia de Aminoácidos , Animales , Línea Celular , Cromatografía por Intercambio Iónico , Cromatografía Liquida , Electroforesis en Gel Bidimensional , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Humanos , Mamíferos , Datos de Secuencia Molecular , Peso Molecular , Multimerización de Proteína , Espectrometría de Masas en Tándem
14.
Mol Cell Proteomics ; 11(2): M111.013441, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22126794

RESUMEN

Redox-switches are critical cysteine thiols that are modified in response to changes in the cell's environment conferring a functional effect. S-nitrosylation (SNO) is emerging as an important modulator of these regulatory switches; however, much remains unknown about the nature of these specific cysteine residues and how oxidative signals are interpreted. Because of their labile nature, SNO-modifications are routinely detected using the biotin switch assay. Here, a new isotope coded cysteine thiol-reactive multiplex reagent, cysTMT(6), is used in place of biotin, for the specific detection of SNO-modifications and determination of individual protein thiol-reactivity. S-nitrosylation was measured in human pulmonary arterial endothelia cells in vitro and in vivo using the cysTMT(6) quantitative switch assay coupled with mass spectrometry. Cell lysates were treated with S-nitrosoglutathione and used to identify 220 SNO-modified cysteines on 179 proteins. Using this approach it was possible to discriminate potential artifacts including instances of reduced protein disulfide bonds (6) and S-glutathionylation (5) as well as diminished ambiguity in site assignment. Quantitative analysis over a range of NO-donor concentrations (2, 10, 20 µm; GSNO) revealed a continuum of reactivity to SNO-modification. Cysteine response was validated in living cells, demonstrating a greater number of less sensitive cysteine residues are modified with increasing oxidative stimuli. Of note, the majority of available cysteines were found to be unmodified in the current treatment suggesting significant additional capacity for oxidative modifications. These results indicate a possible mechanism for the cell to gauge the magnitude of oxidative stimuli through the progressive and specific accumulation of modified redox-switches.


Asunto(s)
Cisteína/química , Cisteína/metabolismo , Endotelio Vascular/metabolismo , Óxido Nítrico/metabolismo , Proteómica , Arteria Pulmonar/metabolismo , S-Nitrosoglutatión/metabolismo , Biotina/metabolismo , Western Blotting , Células Cultivadas , Endotelio Vascular/citología , Humanos , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Arteria Pulmonar/citología , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/metabolismo , Espectrometría de Masas en Tándem
15.
Mol Cell Proteomics ; 11(6): M112.017764, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22345495

RESUMEN

Thymic stromal lymphopoietin (TSLP) is a cytokine that plays diverse roles in the regulation of immune responses. TSLP requires a heterodimeric receptor complex consisting of IL-7 receptor α subunit and its unique TSLP receptor (gene symbol CRLF2) to transmit signals in cells. Abnormal TSLP signaling (e.g. overexpression of TSLP or its unique receptor TSLPR) contributes to the development of a number of diseases including asthma and leukemia. However, a detailed understanding of the signaling pathways activated by TSLP remains elusive. In this study, we performed a global quantitative phosphoproteomic analysis of the TSLP signaling network using stable isotope labeling by amino acids in cell culture. By employing titanium dioxide in addition to antiphosphotyrosine antibodies as enrichment methods, we identified 4164 phosphopeptides on 1670 phosphoproteins. Using stable isotope labeling by amino acids in cell culture-based quantitation, we determined that the phosphorylation status of 226 proteins was modulated by TSLP stimulation. Our analysis identified activation of several members of the Src and Tec families of kinases including Btk, Lyn, and Tec by TSLP for the first time. In addition, we report TSLP-induced phosphorylation of protein phosphatases such as Ptpn6 (SHP-1) and Ptpn11 (Shp2), which has also not been reported previously. Co-immunoprecipitation assays showed that Shp2 binds to the adapter protein Gab2 in a TSLP-dependent manner. This is the first demonstration of an inducible protein complex in TSLP signaling. A kinase inhibitor screen revealed that pharmacological inhibition of PI-3 kinase, Jak family kinases, Src family kinases or Btk suppressed TSLP-dependent cellular proliferation making them candidate therapeutic targets in diseases resulting from aberrant TSLP signaling. Our study is the first phosphoproteomic analysis of the TSLP signaling pathway that greatly expands our understanding of TSLP signaling and provides novel therapeutic targets for TSLP/TSLPR-associated diseases in humans.


Asunto(s)
Citocinas/fisiología , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Transducción de Señal , Secuencias de Aminoácidos , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Marcaje Isotópico , Ratones , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Unión Proteica , Mapas de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT5/metabolismo , Linfopoyetina del Estroma Tímico
16.
J Proteome Res ; 12(2): 594-604, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23270375

RESUMEN

Isobaric tags for relative and absolute quantitation (iTRAQ) is a prominent mass spectrometry technology for protein identification and quantification that is capable of analyzing multiple samples in a single experiment. Frequently, iTRAQ experiments are carried out using an aliquot from a pool of all samples, or "masterpool", in one of the channels as a reference sample standard to estimate protein relative abundances in the biological samples and to combine abundance estimates from multiple experiments. In this manuscript, we show that using a masterpool is counterproductive. We obtain more precise estimates of protein relative abundance by using the available biological data instead of the masterpool and do not need to occupy a channel that could otherwise be used for another biological sample. In addition, we introduce a simple statistical method to associate proteomic data from multiple iTRAQ experiments with a numeric response and show that this approach is more powerful than the conventionally employed masterpool-based approach. We illustrate our methods using data from four replicate iTRAQ experiments on aliquots of the same pool of plasma samples and from a 406-sample project designed to identify plasma proteins that covary with nutrient concentrations in chronically undernourished children from South Asia.


Asunto(s)
Proteínas Sanguíneas/química , Trastornos de la Nutrición del Niño/sangre , Fragmentos de Péptidos/análisis , Espectrometría de Masas en Tándem/estadística & datos numéricos , Espectrometría de Masas en Tándem/normas , Calibración , Niño , Cromatografía Liquida , Humanos , Nepal , Proteómica , Estándares de Referencia , Espectrometría de Masas en Tándem/métodos , Tripsina/química
17.
J Nutr ; 143(10): 1540-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23966331

RESUMEN

Micronutrient deficiencies are common in undernourished societies yet remain inadequately assessed due to the complexity and costs of existing assays. A plasma proteomics-based approach holds promise in quantifying multiple nutrient:protein associations that reflect biological function and nutritional status. To validate this concept, in plasma samples of a cohort of 500 6- to 8-y-old Nepalese children, we estimated cross-sectional correlations between vitamins A (retinol), D (25-hydroxyvitamin D), and E (α-tocopherol), copper, and selenium, measured by conventional assays, and relative abundance of their major plasma-bound proteins, measured by quantitative proteomics using 8-plex iTRAQ mass tags. The prevalence of low-to-deficient status was 8.8% (<0.70 µmol/L) for retinol, 19.2% (<50 nmol/L) for 25-hydroxyvitamin D, 17.6% (<9.3 µmol/L) for α-tocopherol, 0% (<10 µmol/L) for copper, and 13.6% (<0.6 µmol/L) for selenium. We identified 4705 proteins, 982 in >50 children. Employing a linear mixed effects model, we observed the following correlations: retinol:retinol-binding protein 4 (r = 0.88), 25-hydroxyvitamin D:vitamin D-binding protein (r = 0.58), α-tocopherol:apolipoprotein C-III (r = 0.64), copper:ceruloplasmin (r = 0.65), and selenium:selenoprotein P isoform 1 (r = 0.79) (all P < 0.0001), passing a false discovery rate threshold of 1% (based on P value-derived q values). Individual proteins explained 34-77% (R(2)) of variation in their respective nutrient concentration. Adding second proteins to models raised R(2) to 48-79%, demonstrating a potential to explain additional variation in nutrient concentration by this strategy. Plasma proteomics can identify and quantify protein biomarkers of micronutrient status in undernourished children. The maternal micronutrient supplementation trial, from which data were derived as a follow-up activity, was registered at clinicaltrials.gov as NCT00115271.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Enfermedades Carenciales/sangre , Modelos Biológicos , Proteoma/metabolismo , Proteómica/métodos , Oligoelementos/sangre , Vitaminas/sangre , Apolipoproteína C-III/sangre , Biomarcadores/sangre , Ceruloplasmina/metabolismo , Niño , Cobre/sangre , Estudios Transversales , Enfermedades Carenciales/epidemiología , Humanos , Nepal/epidemiología , Prevalencia , Reproducibilidad de los Resultados , Proteínas de Unión al Retinol/metabolismo , Selenio/sangre , Selenoproteína P/sangre , Vitamina A/sangre , Vitamina D/análogos & derivados , Vitamina D/sangre , Proteína de Unión a Vitamina D/sangre , alfa-Tocoferol/sangre
18.
J Am Soc Mass Spectrom ; 34(4): 595-607, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36939690

RESUMEN

Assessing personal exposure to environmental toxicants is a critical challenge for predicting disease risk. Previously, using human serum albumin (HSA)-based biomonitoring, we reported dosimetric relationships between adducts at HSA Cys34 and ambient air pollutant levels (Smith et al., Chem. Res. Toxicol. 2021, 34, 1183). These results provided the foundation to explore modifications at other sites in HSA to reveal novel adducts of complex exposures. Thus, the Pan-Protein Adductomics (PPA) technology reported here is the next step toward an unbiased, comprehensive characterization of the HSA adductome. The PPA workflow requires <2 µL serum/plasma and uses nanoflow-liquid chromatography, gas-phase fractionation, and overlapping-window data-independent acquisition high-resolution tandem mass spectrometry. PPA analysis of albumin from nonsmoking women exposed to high levels of air pollution uncovered 68 unique location-specific modifications (LSMs) across 21 HSA residues. While nearly half were located at Cys34 (33 LSMs), 35 were detected on other residues, including Lys, His, Tyr, Ser, Met, and Arg. HSA adduct relative abundances spanned a ∼400 000-fold range and included putative products of exogenous (SO2, benzene, phycoerythrobilin) and endogenous (oxidation, lipid peroxidation, glycation, carbamylation) origin, as well as 24 modifications without annotations. PPA quantification revealed statistically significant changes in LSM levels across the 84 days of monitoring (∼3 HSA lifetimes) in the following putative adducts: Cys34 trioxidation, ß-methylthiolation, benzaldehyde, and benzene diol epoxide; Met329 oxidation; Arg145 dioxidation; and unannotated Cys34 and His146 adducts. Notably, the PPA workflow can be extended to any protein. Pan-Protein Adductomics is a novel and powerful strategy for untargeted global exploration of protein modifications.


Asunto(s)
Contaminación del Aire , Albúmina Sérica Humana , Humanos , Femenino , Albúmina Sérica Humana/química , Benceno , Proteínas , Espectrometría de Masas en Tándem
19.
J Proteome Res ; 11(11): 5265-76, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22971049

RESUMEN

To complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO cells including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis, multidimensional liquid chromatography, and solid phase extraction of glycopeptides (SPEG). From the 120 different mass spectrometry analyses generating 682,097 MS/MS spectra, 93,548 unique peptide sequences were identified with at most 0.02 false discovery rate (FDR). A total of 6164 grouped proteins were identified from both glycoproteome and proteome analysis, representing an 8-fold increase in the number of proteins currently identified in the CHO proteome. Furthermore, this is the first proteomic study done using the CHO genome exclusively, which provides for more accurate identification of proteins. From this analysis, the CHO codon frequency was determined and found to be distinct from humans, which will facilitate expression of human proteins in CHO cells. Analysis of the combined proteomic and mRNA data sets indicated the enrichment of a number of pathways including protein processing and apoptosis but depletion of proteins involved in steroid hormone and glycosphingolipid metabolism. Five-hundred four of the detected proteins included N-acetylation modifications, and 1292 different proteins were observed to be N-glycosylated. This first large-scale proteomic analysis will enhance the knowledge base about CHO capabilities for recombinant expression and provide information useful in cell engineering efforts aimed at modifying CHO cellular functions.


Asunto(s)
Proteoma , Acetilación , Animales , Células CHO , Carbohidratos/análisis , Cromatografía Liquida , Codón , Cricetinae , Cricetulus , Glicosilación , ARN Mensajero/genética , Espectrometría de Masas en Tándem
20.
Epigenetics Chromatin ; 15(1): 36, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411491

RESUMEN

Epigenetic modifications to histone proteins serve an important role in regulating permissive and repressive chromatin states, but despite the identification of many histone PTMs and their perceived role, the epigenetic writers responsible for generating these chromatin signatures are not fully characterized. Here, we report that the canonical histone H3K9 methyltransferases EHMT1/GLP and EHMT2/G9a are capable of catalyzing methylation of histone H3 lysine 23 (H3K23). Our data show that while both enzymes can mono- and di-methylate H3K23, only EHMT1/GLP can tri-methylate H3K23. We also show that pharmacologic inhibition or genetic ablation of EHMT1/GLP and/or EHMT2/G9a leads to decreased H3K23 methylation in mammalian cells. Taken together, this work identifies H3K23 as a new direct methylation target of EHMT1/GLP and EHMT2/G9a, and highlights the differential activity of these enzymes on H3K23 as a substrate.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Histonas , Animales , Metilación , Histonas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Histona Metiltransferasas/genética , Cromatina , Mamíferos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA