Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(51): e2210235119, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36516067

RESUMEN

We report that high-quality single crystals of the hexagonal heavy fermion material uranium diauride (UAu2) become superconducting at pressures above 3.2 GPa, the pressure at which an unusual antiferromagnetic state is suppressed. The antiferromagnetic state hosts a marginal fermi liquid and the pressure evolution of the resistivity within this state is found to be very different from that approaching a standard quantum phase transition. The superconductivity that appears above this transition survives in high magnetic fields with a large critical field for all field directions. The critical field also has an unusual angle dependence suggesting that the superconductivity may have an order parameter with multiple components. An order parameter consistent with these observations is predicted to host half-quantum vortices (HQVs). Such vortices can be topologically entangled and have potential applications in quantum computing.

2.
Proc Natl Acad Sci U S A ; 118(49)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34873053

RESUMEN

The term Fermi liquid is almost synonymous with the metallic state. The association is known to break down at quantum critical points (QCPs), but these require precise values of tuning parameters, such as pressure and applied magnetic field, to exactly suppress a continuous phase transition temperature to the absolute zero. Three-dimensional non-Fermi liquid states, apart from superconductivity, that are unshackled from a QCP are much rarer and are not currently well understood. Here, we report that the triangular lattice system uranium diauride (UAu2) forms such a state with a non-Fermi liquid low-temperature heat capacity [Formula: see text] and electrical resistivity [Formula: see text] far below its Néel temperature. The magnetic order itself has a novel structure and is accompanied by weak charge modulation that is not simply due to magnetostriction. The charge modulation continues to grow in amplitude with decreasing temperature, suggesting that charge degrees of freedom play an important role in the non-Fermi liquid behavior. In contrast with QCPs, the heat capacity and resistivity we find are unusually resilient in magnetic field. Our results suggest that a combination of magnetic frustration and Kondo physics may result in the emergence of this novel state.

3.
Phys Rev Lett ; 126(19): 197203, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34047591

RESUMEN

The theory of quantum order-by-disorder (QOBD) explains the formation of modulated magnetic states at the boundary between ferromagnetism and paramagnetism in zero field. PrPtAl has been argued to provide an archetype for this. Here, we report the phase diagram in magnetic field, applied along both the easy a axis and hard b axis. For field aligned to the b axis, we find that the magnetic transition temperatures are suppressed and at low temperature there is a single modulated fan state, separating an easy a axis ferromagnetic state from a field polarized state. This fan state is well explained with the QOBD theory in the presence of anisotropy and field. Experimental evidence supporting the QOBD explanation is provided by the large increase in the T^{2} coefficient of the resistivity and direct detection of enhanced magnetic fluctuations with inelastic neutron scattering, across the field range spanned by the fan state. This shows that the QOBD mechanism can explain field induced modulated states that persist to very low temperature.

4.
J Phys Condens Matter ; 32(41): 415602, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32531764

RESUMEN

A better understanding of the synthesis conditions, composition and physical properties of UTe2 are required to interpret previously reported unconventional superconductivity. Here we report how the superconducting properties of single crystals depend on the ratio of elements present in their synthesis by chemical vapour transport. We have obtained crystals with the highest reported ambient pressure T c and a larger superconducting heat capacity jump from a growth with a U:Te ratio different from that widely used in the literature. For these crystals, the ratio of residual heat capacity in the superconducting state to that of the normal state, γ*/γ N, is significantly lower than 0.5, reported elsewhere. An upturn in the heat capacity below 200 mK is also reduced compared to other studies and is well described by a Schottky anomaly and residual Sommerfeld term rather than quantum critical behaviour.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA