Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 621(7978): 355-364, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37612510

RESUMEN

The prevalence of highly repetitive sequences within the human Y chromosome has prevented its complete assembly to date1 and led to its systematic omission from genomic analyses. Here we present de novo assemblies of 43 Y chromosomes spanning 182,900 years of human evolution and report considerable diversity in size and structure. Half of the male-specific euchromatic region is subject to large inversions with a greater than twofold higher recurrence rate compared with all other chromosomes2. Ampliconic sequences associated with these inversions show differing mutation rates that are sequence context dependent, and some ampliconic genes exhibit evidence for concerted evolution with the acquisition and purging of lineage-specific pseudogenes. The largest heterochromatic region in the human genome, Yq12, is composed of alternating repeat arrays that show extensive variation in the number, size and distribution, but retain a 1:1 copy-number ratio. Finally, our data suggest that the boundary between the recombining pseudoautosomal region 1 and the non-recombining portions of the X and Y chromosomes lies 500 kb away from the currently established1 boundary. The availability of fully sequence-resolved Y chromosomes from multiple individuals provides a unique opportunity for identifying new associations of traits with specific Y-chromosomal variants and garnering insights into the evolution and function of complex regions of the human genome.


Asunto(s)
Cromosomas Humanos Y , Evolución Molecular , Humanos , Masculino , Cromosomas Humanos Y/genética , Genoma Humano/genética , Genómica , Tasa de Mutación , Fenotipo , Eucromatina/genética , Seudogenes , Variación Genética/genética , Cromosomas Humanos X/genética , Regiones Pseudoautosómicas/genética
2.
Bioinformatics ; 39(39 Suppl 1): i242-i251, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37387144

RESUMEN

MOTIVATION: Non-canonical (or non-B) DNA are genomic regions whose three-dimensional conformation deviates from the canonical double helix. Non-B DNA play an important role in basic cellular processes and are associated with genomic instability, gene regulation, and oncogenesis. Experimental methods are low-throughput and can detect only a limited set of non-B DNA structures, while computational methods rely on non-B DNA base motifs, which are necessary but not sufficient indicators of non-B structures. Oxford Nanopore sequencing is an efficient and low-cost platform, but it is currently unknown whether nanopore reads can be used for identifying non-B structures. RESULTS: We build the first computational pipeline to predict non-B DNA structures from nanopore sequencing. We formalize non-B detection as a novelty detection problem and develop the GoFAE-DND, an autoencoder that uses goodness-of-fit (GoF) tests as a regularizer. A discriminative loss encourages non-B DNA to be poorly reconstructed and optimizing Gaussian GoF tests allows for the computation of P-values that indicate non-B structures. Based on whole genome nanopore sequencing of NA12878, we show that there exist significant differences between the timing of DNA translocation for non-B DNA bases compared with B-DNA. We demonstrate the efficacy of our approach through comparisons with novelty detection methods using experimental data and data synthesized from a new translocation time simulator. Experimental validations suggest that reliable detection of non-B DNA from nanopore sequencing is achievable. AVAILABILITY AND IMPLEMENTATION: Source code is available at https://github.com/bayesomicslab/ONT-nonb-GoFAE-DND.


Asunto(s)
Secuenciación de Nanoporos , Humanos , ADN , Carcinogénesis , Transformación Celular Neoplásica , Genómica
3.
J Immunol ; 206(4): 892-903, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33408257

RESUMEN

Donor-derived lymphocytes from allogeneic hematopoietic cell transplantation (allo-HCT) or donor lymphocyte infusion can mediate eradication of host tumor cells in a process labeled the graft-versus-tumor (GVT) effect. Unfortunately, these treatments have produced limited results in various types of leukemia because of an insufficient GVT effect. In this context, molecular engineering of donor lymphocytes to increase the GVT effect may benefit cancer patients. Activating MyD88 signaling in CD8+ T cells via TLR enhances T cell activation and cytotoxicity. However, systemic administration of TLR ligands to stimulate MyD88 could induce hyperinflammation or elicit protumor effects. To circumvent this problem, we devised a synthetic molecule consisting of MyD88 linked to the ectopic domain of CD8a (CD8α:MyD88). We used this construct to test the hypothesis that MyD88 costimulation in donor CD8+ T cells increases tumor control following allo-HCT in mice by increasing T cell activation, function, and direct tumor cytotoxicity. Indeed, an increase in both in vitro and in vivo tumor control was observed with CD8α:MyD88 T cells. This increase in the GVT response was associated with increased T cell expansion, increased functional capacity, and an increase in direct cytotoxic killing of the tumor cells. However, MyD88 costimulation in donor CD8+ T cells was linked to increased yet nonlethal graft-versus-host disease in mice treated with these engineered CD8+ T cells. Given these observations, synthetic CD8α:MyD88 donor T cells may represent a unique and versatile approach to enhance the GVT response that merits further refinement to improve the effectiveness of allo-HCT.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia , Animales , Linfocitos T CD8-positivos , Efecto Injerto vs Tumor , Humanos , Ratones , Factor 88 de Diferenciación Mieloide , Trasplante Homólogo
4.
J Hered ; 114(1): 35-43, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36146896

RESUMEN

The Javan gibbon, Hylobates moloch, is an endangered gibbon species restricted to the forest remnants of western and central Java, Indonesia, and one of the rarest of the Hylobatidae family. Hylobatids consist of 4 genera (Holoock, Hylobates, Symphalangus, and Nomascus) that are characterized by different numbers of chromosomes, ranging from 38 to 52. The underlying cause of this karyotype plasticity is not entirely understood, at least in part, due to the limited availability of genomic data. Here we present the first scaffold-level assembly for H. moloch using a combination of whole-genome Illumina short reads, 10X Chromium linked reads, PacBio, and Oxford Nanopore long reads and proximity-ligation data. This Hylobates genome represents a valuable new resource for comparative genomics studies in primates.


Asunto(s)
Genoma , Hylobates , Animales , Hylobates/genética , Bosques , Especies en Peligro de Extinción , Indonesia
5.
Proc Natl Acad Sci U S A ; 117(32): 19328-19338, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32690705

RESUMEN

Co-option of transposable elements (TEs) to become part of existing or new enhancers is an important mechanism for evolution of gene regulation. However, contributions of lineage-specific TE insertions to recent regulatory adaptations remain poorly understood. Gibbons present a suitable model to study these contributions as they have evolved a lineage-specific TE called LAVA (LINE-AluSz-VNTR-AluLIKE), which is still active in the gibbon genome. The LAVA retrotransposon is thought to have played a role in the emergence of the highly rearranged structure of the gibbon genome by disrupting transcription of cell cycle genes. In this study, we investigated whether LAVA may have also contributed to the evolution of gene regulation by adopting enhancer function. We characterized fixed and polymorphic LAVA insertions across multiple gibbons and found 96 LAVA elements overlapping enhancer chromatin states. Moreover, LAVA was enriched in multiple transcription factor binding motifs, was bound by an important transcription factor (PU.1), and was associated with higher levels of gene expression in cis We found gibbon-specific signatures of purifying/positive selection at 27 LAVA insertions. Two of these insertions were fixed in the gibbon lineage and overlapped with enhancer chromatin states, representing putative co-opted LAVA enhancers. These putative enhancers were located within genes encoding SETD2 and RAD9A, two proteins that facilitate accurate repair of DNA double-strand breaks and prevent chromosomal rearrangement mutations. Co-option of LAVA in these genes may have influenced regulation of processes that preserve genome integrity. Our findings highlight the importance of considering lineage-specific TEs in studying evolution of gene regulatory elements.


Asunto(s)
Genoma , Hylobates/genética , Retroelementos , Animales , Cromatina/genética , Evolución Molecular , Regulación de la Expresión Génica , Hylobates/clasificación , Mutagénesis Insercional , Secuencias Reguladoras de Ácidos Nucleicos , Especificidad de la Especie
6.
J Deaf Stud Deaf Educ ; 28(3): 267-279, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-36906841

RESUMEN

READY is a self-report prospective longitudinal study of deaf and hard of hearing (DHH) young people aged 16 to 19 years on entry. Its overarching aim is to explore the risk and protective factors for successful transition to adulthood. This article introduces the cohort of 163 DHH young people, background characteristics and study design. Focusing on self-determination and subjective well-being only, those who completed the assessments in written English (n = 133) score significantly lower than general population comparators. Sociodemographic variables explain very little of the variance in well-being scores; higher levels of self-determination are a predictor of higher levels of well-being, outweighing the influence of any background characteristics. Although women and those who are LGBTQ+ have statistically significantly lower well-being scores, these aspects of their identity are not predictive risk factors. These results add to the case for self-determination interventions to support better well-being amongst DHH young people.


Asunto(s)
Sordera , Pérdida Auditiva , Personas con Deficiencia Auditiva , Humanos , Femenino , Adolescente , Estudios Prospectivos , Estudios Longitudinales , Factores de Riesgo
7.
Mol Biol Evol ; 38(9): 3972-3992, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33983366

RESUMEN

Centromeres are functionally conserved chromosomal loci essential for proper chromosome segregation during cell division, yet they show high sequence diversity across species. Despite their variation, a near universal feature of centromeres is the presence of repetitive sequences, such as DNA satellites and transposable elements (TEs). Because of their rapidly evolving karyotypes, gibbons represent a compelling model to investigate divergence of functional centromere sequences across short evolutionary timescales. In this study, we use ChIP-seq, RNA-seq, and fluorescence in situ hybridization to comprehensively investigate the centromeric repeat content of the four extant gibbon genera (Hoolock, Hylobates, Nomascus, and Siamang). In all gibbon genera, we find that CENP-A nucleosomes and the DNA-proteins that interface with the inner kinetochore preferentially bind retroelements of broad classes rather than satellite DNA. A previously identified gibbon-specific composite retrotransposon, LAVA, known to be expanded within the centromere regions of one gibbon genus (Hoolock), displays centromere- and species-specific sequence differences, potentially as a result of its co-option to a centromeric function. When dissecting centromere satellite composition, we discovered the presence of the retroelement-derived macrosatellite SST1 in multiple centromeres of Hoolock, whereas alpha-satellites represent the predominate satellite in the other genera, further suggesting an independent evolutionary trajectory for Hoolock centromeres. Finally, using de novo assembly of centromere sequences, we determined that transcripts originating from gibbon centromeres recapitulate the species-specific TE composition. Combined, our data reveal dynamic shifts in the repeat content that define gibbon centromeres and coincide with the extensive karyotypic diversity within this lineage.


Asunto(s)
Centrómero , Hylobates , Animales , Centrómero/genética , ADN Satélite/genética , Hylobates/genética , Hibridación Fluorescente in Situ , Retroelementos/genética
8.
Genome Res ; 28(7): 983-997, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29914971

RESUMEN

The relationship between evolutionary genome remodeling and the three-dimensional structure of the genome remain largely unexplored. Here, we use the heavily rearranged gibbon genome to examine how evolutionary chromosomal rearrangements impact genome-wide chromatin interactions, topologically associating domains (TADs), and their epigenetic landscape. We use high-resolution maps of gibbon-human breaks of synteny (BOS), apply Hi-C in gibbon, measure an array of epigenetic features, and perform cross-species comparisons. We find that gibbon rearrangements occur at TAD boundaries, independent of the parameters used to identify TADs. This overlap is supported by a remarkable genetic and epigenetic similarity between BOS and TAD boundaries, namely presence of CpG islands and SINE elements, and enrichment in CTCF and H3K4me3 binding. Cross-species comparisons reveal that regions orthologous to BOS also correspond with boundaries of large (400-600 kb) TADs in human and other mammalian species. The colocalization of rearrangement breakpoints and TAD boundaries may be due to higher chromatin fragility at these locations and/or increased selective pressure against rearrangements that disrupt TAD integrity. We also examine the small portion of BOS that did not overlap with TAD boundaries and gave rise to novel TADs in the gibbon genome. We postulate that these new TADs generally lack deleterious consequences. Last, we show that limited epigenetic homogenization occurs across breakpoints, irrespective of their time of occurrence in the gibbon lineage. Overall, our findings demonstrate remarkable conservation of chromatin interactions and epigenetic landscape in gibbons, in spite of extensive genomic shuffling.


Asunto(s)
Epigénesis Genética/genética , Genoma/genética , Animales , Cromatina/genética , Islas de CpG/genética , Epigenómica/métodos , Genómica/métodos , Humanos , Sintenía/genética
9.
Chromosome Res ; 28(1): 111-127, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32146545

RESUMEN

Innovations in high-throughout sequencing approaches are being marshaled to both reveal the composition of the abundant and heterogeneous noncoding RNAs that populate cell nuclei and lend insight to the mechanisms by which noncoding RNAs influence chromosome biology and gene expression. This review focuses on some of the recent technological developments that have enabled the isolation of nascent transcripts and chromatin-associated and DNA-interacting RNAs. Coupled with emerging genome assembly and analytical approaches, the field is poised to achieve a comprehensive catalog of nuclear noncoding RNAs, including those derived from repetitive regions within eukaryotic genomes. Herein, particular attention is paid to the challenges and advances in the sequence analyses of repeat and transposable element-derived noncoding RNAs and in ascribing specific function(s) to such RNAs.


Asunto(s)
ARN no Traducido , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , ADN/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Interferencia de ARN , Transcriptoma
10.
BMC Genomics ; 21(1): 656, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32967626

RESUMEN

BACKGROUND: One of the biggest challenges in chromosome biology is to understand the occurrence and complex genetics of the extra, non-essential karyotype elements, commonly known as supernumerary or B chromosomes (Bs). The non-Mendelian inheritance and non-pairing abilities of B chromosomes make them an interesting model for genomics studies, thus bringing to bear different questions about their genetic composition, evolutionary survival, maintenance and functional role inside the cell. This study uncovers these phenomena in multiple species that we considered as representative organisms of both vertebrate and invertebrate models for B chromosome analysis. RESULTS: We sequenced the genomes of three animal species including two fishes Astyanax mexicanus and Astyanax correntinus, and a grasshopper Abracris flavolineata, each with and without Bs, and identified their B-localized genes and repeat contents. We detected unique sequences occurring exclusively on Bs and discovered various evolutionary patterns of genomic rearrangements associated to Bs. In situ hybridization and quantitative polymerase chain reactions further validated our genomic approach confirming detection of sequences on Bs. The functional annotation of B sequences showed that the B chromosome comprises regions of gene fragments, novel genes, and intact genes, which encode a diverse set of functions related to important biological processes such as metabolism, morphogenesis, reproduction, transposition, recombination, cell cycle and chromosomes functions which might be important for their evolutionary success. CONCLUSIONS: This study reveals the genomic structure, composition and function of Bs, which provide new insights for theories of B chromosome evolution. The selfish behavior of Bs seems to be favored by gained genes/sequences.


Asunto(s)
Cromosomas/genética , Evolución Molecular , Reordenamiento Génico , Animales , Characidae/genética , Saltamontes/genética
11.
Chromosome Res ; 27(3): 237-252, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30771198

RESUMEN

A common feature of eukaryotic centromeres is the presence of large tracts of tandemly arranged repeats, known as satellite DNA. However, these centromeric repeats appear to experience rapid evolution under forces such as molecular drive and centromere drive, seemingly without consequence to the integrity of the centromere. Moreover, blocks of heterochromatin within the karyotype, including the centromere, are hotspots for chromosome rearrangements that may drive speciation events by contributing to reproductive isolation. However, the relationship between the evolution of heterochromatic sequences and the karyotypic dynamics of these regions remains largely unknown. Here, we show that a single conserved satellite DNA sequence in the order Rodentia of the genus Peromyscus localizes to recurrent sites of chromosome rearrangements and heterochromatic amplifications. Peromyscine species display several unique features of chromosome evolution compared to other Rodentia, including stable maintenance of a strict chromosome number of 48 among all known species in the absence of any detectable interchromosomal rearrangements. Rather, the diverse karyotypes of Peromyscine species are due to intrachromosomal variation in blocks of repeated DNA content. Despite wide variation in the copy number and location of repeat blocks among different species, we find that a single satellite monomer maintains a conserved sequence and homogenized tandem repeat structure, defying predictions of molecular drive. The conservation of this satellite monomer results in common, abundant, and large blocks of chromatin that are homologous among chromosomes within one species and among diverged species. Thus, such a conserved repeat may have facilitated the retention of polymorphic chromosome variants within individuals and intrachromosomal rearrangements between species-both factors that have previously been hypothesized to contribute towards the extremely wide range of ecological adaptations that this genus exhibits.


Asunto(s)
Centrómero , ADN Satélite/genética , Cariotipo , Peromyscus/genética , Animales , Secuencia Conservada , Evolución Molecular , Variación Genética , Heterocromatina , Especificidad de la Especie
12.
Plant Physiol ; 176(2): 1547-1558, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29150558

RESUMEN

A major question in plant biology concerns the specification and functional differentiation of cell types. This is in the context of constraints imposed by networks of cell walls that both adhere cells and contribute to the form and function of developing organs. Here, we report the identification of a glycan epitope that is specific to phloem sieve element cell walls in several systems. A monoclonal antibody, designated LM26, binds to the cell wall of phloem sieve elements in stems of Arabidopsis (Arabidopsis thaliana), Miscanthus x giganteus, and notably sugar beet (Beta vulgaris) roots where phloem identification is an important factor for the study of phloem unloading of Suc. Using microarrays of synthetic oligosaccharides, the LM26 epitope has been identified as a ß-1,6-galactosyl substitution of ß-1,4-galactan requiring more than three backbone residues for optimized recognition. This branched galactan structure has previously been identified in garlic (Allium sativum) bulbs in which the LM26 epitope is widespread throughout most cell walls including those of phloem cells. Garlic bulb cell wall material has been used to confirm the association of the LM26 epitope with cell wall pectic rhamnogalacturonan-I polysaccharides. In the phloem tissues of grass stems, the LM26 epitope has a complementary pattern to that of the LM5 linear ß-1,4-galactan epitope, which is detected only in companion cell walls. Mechanical probing of transverse sections of M x giganteus stems and leaves by atomic force microscopy indicates that phloem sieve element cell walls have a lower indentation modulus (indicative of higher elasticity) than companion cell walls.


Asunto(s)
Arabidopsis/metabolismo , Beta vulgaris/metabolismo , Galactanos/metabolismo , Poaceae/metabolismo , Anticuerpos Monoclonales , Arabidopsis/citología , Beta vulgaris/citología , Pared Celular/metabolismo , Epítopos , Galactanos/química , Galactanos/inmunología , Fenómenos Mecánicos , Análisis por Micromatrices , Microscopía de Fuerza Atómica , Floema/citología , Floema/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Tallos de la Planta/citología , Tallos de la Planta/metabolismo , Poaceae/citología
13.
Chromosome Res ; 26(1-2): 5-23, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29332159

RESUMEN

Although it was nearly 70 years ago when transposable elements (TEs) were first discovered "jumping" from one genomic location to another, TEs are now recognized as contributors to genomic innovations as well as genome instability across a wide variety of species. In this review, we illustrate the ways in which active TEs, specifically retroelements, can create novel chromosome rearrangements and impact gene expression, leading to disease in some cases and species-specific diversity in others. We explore the ways in which eukaryotic genomes have evolved defense mechanisms to temper TE activity and the ways in which TEs continue to influence genome structure despite being rendered transpositionally inactive. Finally, we focus on the role of TEs in the establishment, maintenance, and stabilization of critical, yet rapidly evolving, chromosome features: eukaryotic centromeres. Across centromeres, specific types of TEs participate in genomic conflict, a balancing act wherein they are actively inserting into centromeric domains yet are harnessed for the recruitment of centromeric histones and potentially new centromere formation.


Asunto(s)
Elementos Transponibles de ADN/genética , Genoma/genética , Centrómero/genética , ADN Satélite , Humanos , Retroelementos/genética
14.
J Immunol ; 199(10): 3700-3710, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29046346

RESUMEN

The CD27-CD70 pathway is known to provide a costimulatory signal, with CD70 expressed on APCs and CD27 functions on T cells. Although CD70 is also expressed on activated T cells, it remains unclear how T cell-derived CD70 affects T cell function. Therefore, we have assessed the role of T cell-derived CD70 using adoptive-transfer models, including autoimmune inflammatory bowel disease and allogeneic graft-versus-host disease. Surprisingly, compared with wild-type T cells, CD70-/- T cells caused more severe inflammatory bowel disease and graft-versus-host disease and produced higher levels of inflammatory cytokines. Mechanistic analyses reveal that IFN-γ induces CD70 expression in T cells, and CD70 limits T cell expansion via a regulatory T cell-independent mechanism that involves caspase-dependent T cell apoptosis and upregulation of inhibitory immune checkpoint molecules. Notably, T cell-intrinsic CD70 signaling contributes, as least in part, to the inhibitory checkpoint function. Overall, our findings demonstrate for the first time, to our knowledge, that T cell-derived CD70 plays a novel immune checkpoint role in inhibiting inflammatory T cell responses. This study suggests that T cell-derived CD70 performs a critical negative feedback function to downregulate inflammatory T cell responses.


Asunto(s)
Ligando CD27/metabolismo , Enfermedad Injerto contra Huésped/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Interferón gamma/metabolismo , Linfocitos T/inmunología , Traslado Adoptivo , Animales , Apoptosis , Ligando CD27/genética , Caspasas/metabolismo , Proliferación Celular , Células Cultivadas , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Linfocitos T/trasplante , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
15.
J Immunol ; 199(1): 336-347, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28550198

RESUMEN

Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment for hematologic and immunologic diseases. However, graft-versus-host disease (GVHD) may develop when donor-derived T cells recognize and damage genetically distinct normal host tissues. In addition to TCR signaling, costimulatory pathways are involved in T cell activation. CD27 is a TNFR family member expressed on T cells, and its ligand, CD70, is expressed on APCs. The CD27/CD70 costimulatory pathway was shown to be critical for T cell function and survival in viral infection models. However, the role of this pathway in allo-HCT is previously unknown. In this study, we have examined its contribution in GVHD pathogenesis. Surprisingly, Ab blockade of CD70 after allo-HCT significantly increases GVHD. Interestingly, whereas donor T cell- or bone marrow-derived CD70 plays no role in GVHD, host-derived CD70 inhibits GVHD as CD70-/- hosts show significantly increased GVHD. This is evidenced by reduced survival, more severe weight loss, and increased histopathologic damage compared with wild-type hosts. In addition, CD70-/- hosts have higher levels of proinflammatory cytokines TNF-α, IFN-γ, IL-2, and IL-17. Moreover, accumulation of donor CD4+ and CD8+ effector T cells is increased in CD70-/- versus wild-type hosts. Mechanistic analyses suggest that CD70 expressed by host hematopoietic cells is involved in the control of alloreactive T cell apoptosis and expansion. Together, our findings demonstrate that host CD70 serves as a unique negative regulator of allogeneic T cell response by contributing to donor T cell apoptosis and inhibiting expansion of donor effector T cells.


Asunto(s)
Ligando CD27/inmunología , Enfermedad Injerto contra Huésped/inmunología , Activación de Linfocitos , Linfocitos T/fisiología , Animales , Apoptosis , Ligando CD27/deficiencia , Ligando CD27/genética , Regulación de la Expresión Génica , Enfermedad Injerto contra Huésped/fisiopatología , Interferón gamma/inmunología , Interleucina-17/inmunología , Interleucina-2/inmunología , Ratones , Ratones Endogámicos C57BL , Bazo/citología , Linfocitos T/inmunología , Linfocitos T/patología , Trasplante Homólogo , Factor de Necrosis Tumoral alfa/inmunología
16.
Chromosoma ; 126(2): 313-323, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27169573

RESUMEN

Supernumerary chromosomes have been studied in many species of eukaryotes, including the cichlid fish, Astatotilapia latifasciata. However, there are many unanswered questions about the maintenance, inheritance, and functional aspects of supernumerary chromosomes. The cichlid family has been highlighted as a model for evolutionary studies, including those that focus on mechanisms of chromosome evolution. Individuals of A. latifasciata are known to carry up to two B heterochromatic isochromosomes that are enriched in repetitive DNA and contain few intact gene sequences. We isolated and characterized a transcriptionally active repeated DNA, called B chromosome noncoding DNA (BncDNA), highly represented across all B chromosomes of A. latifasciata. BncDNA transcripts are differentially processed among six different tissues, including the production of smaller transcripts, indicating transcriptional variation may be linked to B chromosome presence and sexual phenotype. The transcript lengths and lack of similarity with known protein/gene sequences indicate BncRNA might represent a novel long noncoding RNA family (lncRNA). The potential for interaction between BncRNA and known miRNAs were computationally predicted, resulting in the identification of possible binding of this sequence in upregulated miRNAs related to the presence of B chromosomes. In conclusion, Bnc is a transcriptionally active repetitive DNA enriched in B chromosomes with potential action over B chromosome maintenance in somatic cells and meiotic drive in gametic cells.


Asunto(s)
Cromosomas , Cíclidos/genética , ARN no Traducido , Secuencias Repetitivas de Ácidos Nucleicos , Transcripción Genética , Animales , Análisis por Conglomerados , Biología Computacional/métodos , Evolución Molecular , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genómica/métodos , Masculino
17.
Biol Blood Marrow Transplant ; 24(12): 2397-2408, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30006303

RESUMEN

Graft-versus-host disease (GVHD) is a serious complication after allogeneic hematopoietic cell transplantation (allo-HCT) that limits the therapeutic potential of this treatment. Host antigen-presenting cells (APCs) play a vital role in activating donor T cells that subsequently use granzyme B (GzmB) and other cytotoxic molecules to damage host normal tissues. Serine protease inhibitor 6 (Spi6), known as the sole endogenous inhibitor of GzmB, has been implicated in protecting T cells and APCs against GzmB-inflicted damage. In this study we used murine models to examine the previously unknown role of host-derived Spi6 in GVHD pathogenesis. Our results indicated that host Spi6 deficiency exacerbated GVHD as evidenced by significantly increased lethality and clinical and histopathologic scores. Using bone marrow chimera system, we found that Spi6 in nonhematopoietic tissue played a dominant role in protecting against GVHD and was significantly upregulated in intestinal epithelial cells after allo-HCT, whereas Spi6 in hematopoietic APCs surprisingly suppressed alloreactive T cell response. Interestingly, the protective effect of Spi6 and its expression in intestinal epithelial cells appeared to be independent of donor-derived GzmB. We used in silico modeling to explore potential targets of Spi6. Interaction tested in silico demonstrated that Spi6 could inhibit caspase-3 and caspase-8 with the same functional loop that inhibits GzmB but was not capable of forming stable interaction with caspase-1 or granzyme A. Using an in vitro co-culture system, we further identified that donor T cell-derived IFN-γ was important for inducing Spi6 expression in an intestinal epithelial cell line. Altogether, our data indicate that host Spi6 plays a novel, GzmB-independent role in regulating alloreactive T cell response and protecting intestinal epithelial cells. Therefore, enhancing host-derived Spi6 function has the potential to reduce GVHD.


Asunto(s)
Células Epiteliales/metabolismo , Enfermedad Injerto contra Huésped/terapia , Granzimas/metabolismo , Intestinos/citología , Inhibidores de Serina Proteinasa/uso terapéutico , Animales , Enfermedad Injerto contra Huésped/patología , Granzimas/genética , Humanos , Ratones , Inhibidores de Serina Proteinasa/farmacología
18.
Mamm Genome ; 29(5-6): 344-352, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29947964

RESUMEN

Species across the rodent genus Peromyscus have become prominent models for studying diverse mechanistic and evolutionary processes, including chromosome evolution, infectious disease transmission and human health, ecological adaptation, coat color variation, and parental care. Supporting such diverse research programs has been the development of genetic and genomic resources for species within this genus, including genome data, interspecific chromosome homologies, and a recently developed genetic map. Based on interspecific hybrids between the deer mouse (Peromyscus maniculatus bairdii) and the old-field, or beach, mouse (Peromyscus polionotus) and backcross progeny to Peromyscus maniculatus, a linkage map was developed based on 190 genes and 141 microsatellite loci. However, resolution of several linkage groups with respect to chromosome assignment was lacking and four chromosomes (8, 16, 20, and 21) were not clearly delineated with linkage data alone. The recent development of a high-density map for Peromyscus proved ineffective in resolving chromosome linkage for these four chromosomes. Herein we present an updated linkage map for Peromyscus maniculatus, including linkage group-chromosome assignments, using fluorescence in situ hybridization mapping of BACs and whole chromosome paints. We resolve the previously conflicting chromosome assignment of linkage groups to Chromosomes 8, 16, 20, and 21, and confirm the assignment of linkage groups to Chromosomes 18 and 22. This updated linkage map with validated chromosome assignment provides a solid foundation for chromosome nomenclature for this species.


Asunto(s)
Mapeo Cromosómico , Cromosomas de los Mamíferos , Ligamiento Genético , Peromyscus/genética , Animales , Pintura Cromosómica , Cruzamientos Genéticos , Femenino , Hibridación Fluorescente in Situ , Masculino , Ratones
19.
Mol Ecol ; 27(19): 3783-3798, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29624756

RESUMEN

Because sex chromosomes, by definition, carry genes that determine sex, mutations that alter their structural and functional stability can have immediate consequences for the individual by reducing fertility, but also for a species by altering the sex ratio. Moreover, the sex-specific segregation patterns of heteromorphic sex chromosomes make them havens for selfish genetic elements that not only create suboptimal sex ratios but can also foster sexual antagonism. Compensatory mutations to mitigate antagonism or return sex ratios to a Fisherian optimum can create hybrid incompatibility and establish reproductive barriers leading to species divergence. The destabilizing influence of these selfish elements is often manifest within populations as copy number variants (CNVs) in satellite repeats and transposable elements (TE) or as CNVs involving sex-determining genes, or genes essential to fertility and sex chromosome dosage compensation. This review catalogs several examples of well-studied sex chromosome CNVs in Drosophilids and mammals that underlie instances of meiotic drive, hybrid incompatibility and disruptions to sex differentiation and sex chromosome dosage compensation. While it is difficult to pinpoint a direct cause/effect relationship between these sex chromosome CNVs and speciation, it is easy to see how their effects in creating imbalances between the sexes, and the compensatory mutations to restore balance, can lead to lineage splitting and species formation.


Asunto(s)
Dosificación de Gen , Especiación Genética , Cromosomas Sexuales/genética , Animales , Variaciones en el Número de Copia de ADN , Elementos Transponibles de ADN , Femenino , Masculino , Meiosis , Secuencias Repetitivas de Ácidos Nucleicos , Aislamiento Reproductivo , Procesos de Determinación del Sexo , Razón de Masculinidad
20.
Prog Mol Subcell Biol ; 56: 257-281, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28840241

RESUMEN

The chromosome biology field at large has benefited from studies of the cell cycle components, protein cascades and genomic landscape that are required for centromere identity, assembly and stable transgenerational inheritance. Research over the past 20 years has challenged the classical descriptions of a centromere as a stable, unmutable, and transcriptionally silent chromosome component. Instead, based on studies from a broad range of eukaryotic species, including yeast, fungi, plants, and animals, the centromere has been redefined as one of the more dynamic areas of the eukaryotic genome, requiring coordination of protein complex assembly, chromatin assembly, and transcriptional activity in a cell cycle specific manner. What has emerged from more recent studies is the realization that the transcription of specific types of nucleic acids is a key process in defining centromere integrity and function. To illustrate the transcriptional landscape of centromeres across eukaryotes, we focus this review on how transcripts interact with centromere proteins, when in the cell cycle centromeric transcription occurs, and what types of sequences are being transcribed. Utilizing data from broadly different organisms, a picture emerges that places centromeric transcription as an integral component of centromere function.


Asunto(s)
Centrómero/genética , Transcripción Genética , Animales , Ciclo Celular/genética , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA