Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 66(4): 402-414, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35045271

RESUMEN

Oxygen supplementation in preterm infants disrupts alveolar epithelial type 2 (AT2) cell proliferation through poorly understood mechanisms. Here, newborn mice are used to understand how hyperoxia stimulates an early aberrant wave of AT2 cell proliferation that occurs between Postnatal Days (PNDs) 0 and 4. RNA-sequencing analysis of AT2 cells isolated from PND4 mice revealed hyperoxia stimulates expression of mitochondrial-specific methylenetetrahydrofolate dehydrogenase 2 and other genes involved in mitochondrial one-carbon coupled folate metabolism and serine synthesis. The same genes are induced when AT2 cells normally proliferate on PND7 and when they proliferate in response to the mitogen fibroblast growth factor 7. However, hyperoxia selectively stimulated their expression via the stress-responsive activating transcription factor 4 (ATF4). Administration of the mitochondrial superoxide scavenger mitoTEMPO during hyperoxia suppressed ATF4 and thus early AT2 cell proliferation, but it had no effect on normative AT2 cell proliferation seen on PND7. Because ATF4 and methylenetetrahydrofolate dehydrogenase are detected in hyperplastic AT2 cells of preterm infant humans and baboons with bronchopulmonary dysplasia, dampening mitochondrial oxidative stress and ATF4 activation may provide new opportunities for controlling excess AT2 cell proliferation in neonatal lung disease.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Hiperoxia , Factor de Transcripción Activador 4/genética , Animales , Animales Recién Nacidos , Proliferación Celular , Ácido Fólico/farmacología , Hiperoxia/metabolismo , Recien Nacido Prematuro , Ratones
2.
Am J Physiol Lung Cell Mol Physiol ; 322(4): L581-L592, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35196880

RESUMEN

Children and young adults with mutant forms of ataxia telangiectasia mutated (ATM), a kinase involved in DNA damage signaling and mitochondrial homeostasis, suffer from recurrent respiratory infections, immune deficiencies, and obstructive airways disease associated with disorganized airway epithelium. We previously showed in mice how Atm was required to mount a protective immune memory response to influenza A virus [IAV; Hong Kong/X31 (HKx31), H3N2]. Here, Atm wildtype (WT) and knockout (Atm-null) mice were used to investigate how Atm is required to regenerate the injured airway epithelium following IAV infection. When compared with WT mice, naive Atm-null mice had increased airway resistance and reduced lung compliance that worsened during infection before returning to naïve levels by 56 days postinfection (dpi). Although Atm-null lungs appeared pathologically normal before infection by histology, they developed an abnormal proximal airway epithelium after infection that contained E-cadherin+, Sox2+, and Cyp2f2+ cells lacking secretoglobin family 1 A member 1 (Scgb1a1) protein expression. Patchy and low expression of Scgb1a1 were eventually observed by 56 dpi. Genetic lineage tracing in HKx31-infected mice revealed club cells require Atm to rapidly and efficiently restore Scgb1a1 expression in proximal airways. Since Scgb1a1 is an immunomodulatory protein that protects the lung against a multitude of respiratory challenges, failure to efficiently restore its expression may contribute to the respiratory diseases seen in individuals with ataxia telangiectasia.


Asunto(s)
Ataxia Telangiectasia , Virus de la Influenza A , Gripe Humana , Animales , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Células Epiteliales/metabolismo , Humanos , Subtipo H3N2 del Virus de la Influenza A , Ratones , Ratones Noqueados
3.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L578-L592, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36068185

RESUMEN

Bronchiolitis obliterans (BO) is a debilitating disease of the small airways that can develop following exposure to toxic chemicals as well as respiratory tract infections. BO development is strongly associated with diacetyl (DA) inhalation exposures at occupationally relevant concentrations or severe influenza A viral (IAV) infections. However, it remains unclear whether lower dose exposures or more mild IAV infections can result in similar pathology. In the current work, we combined these two common environmental exposures, DA and IAV, to test whether shorter DA exposures followed by sublethal IAV infection would result in similar airways disease. Adult mice exposed to DA vapors 1 h/day for 5 consecutive days followed by infection with the airway-tropic IAV H3N2 (HKx31) resulted in increased mortality, increased bronchoalveolar lavage (BAL) neutrophil percentage, mixed obstruction and restriction by lung function, and subsequent airway remodeling. Exposure to DA or IAV alone failed to result in significant pathology, whereas mice exposed to DA + IAV showed increased α-smooth muscle actin (αSMA) and epithelial cells coexpressing the basal cell marker keratin 5 (KRT5) with the club cell marker SCGB1A1. To test whether DA exposure impairs epithelial repair after IAV infection, mice were infected first with IAV and then exposed to DA during airway epithelial repair. Mice exposed to IAV + DA developed similar airway remodeling with increased subepithelial αSMA and epithelial cells coexpressing KRT5 and SCGB1A1. Our findings reveal an underappreciated concept that common environmental insults while seemingly harmless by themselves can have catastrophic implications on lung function and long-term respiratory health when combined.


Asunto(s)
Bronquiolitis Obliterante , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Ratones , Animales , Humanos , Diacetil/toxicidad , Remodelación de las Vías Aéreas (Respiratorias) , Subtipo H3N2 del Virus de la Influenza A , Bronquiolitis Obliterante/patología , Mucosa Respiratoria/patología , Células Epiteliales/patología , Pulmón/patología , Gripe Humana/patología
4.
Am J Physiol Lung Cell Mol Physiol ; 321(4): L750-L763, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34323115

RESUMEN

It is well known that supplemental oxygen used to treat preterm infants in respiratory distress is associated with permanently disrupting lung development and the host response to influenza A virus (IAV). However, many infants who go home with normally functioning lungs are also at risk for hyperreactivity after a respiratory viral infection. We recently reported a new, low-dose hyperoxia mouse model (40% for 8 days; 40×8) that causes a transient change in lung function that resolves, rendering 40×8 adult animals functionally indistinguishable from room air controls. Here we report that when infected with IAV, 40×8 mice display an early transient activation of TGFß signaling and later airway hyperreactivity associated with peribronchial inflammation (profibrotic macrophages) and fibrosis compared with infected room air controls, suggesting neonatal oxygen induced hidden molecular changes that prime the lung for hyperreactive airways disease. Although searching for potential activators of TGFß signaling, we discovered that thrombospondin-1 (TSP-1) is elevated in naïve 40×8 mice compared with controls and localized to lung megakaryocytes and platelets before and during IAV infection. Elevated TSP-1 was also identified in human autopsy samples of former preterm infants with bronchopulmonary dysplasia. These findings reveal how low doses of oxygen that do not durably change lung function may prime it for hyperreactive airways disease by changing expression of genes, such as TSP-1, thus helping to explain why former preterm infants who have normal lung function are susceptible to airway obstruction and increased morbidity after viral infection.


Asunto(s)
Hiperreactividad Bronquial/patología , Displasia Broncopulmonar/patología , Hiperoxia/patología , Infecciones por Orthomyxoviridae/patología , Fibrosis Pulmonar/patología , Trombospondina 1/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Perros , Femenino , Humanos , Virus de la Influenza A/inmunología , Gripe Humana/patología , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/virología , Factor de Crecimiento Transformador beta/metabolismo
5.
J Pediatr ; 223: 20-28.e2, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32711747

RESUMEN

OBJECTIVE: To evaluate the predictive value of cumulative oxygen exposure thresholds over the first 2 postnatal weeks, linking them to bronchopulmonary dysplasia (BPD) and 1-year pulmonary morbidity and lung function in extremely low gestational age newborns. STUDY DESIGN: Infants (N = 704) enrolled in the Prematurity and Respiratory Outcomes Program, a multicenter prospective cohort study, that survived to discharge were followed through their neonatal intensive care unit hospitalization to 1-year corrected age. Cumulative oxygen exposure (OxygenAUC14) thresholds were derived from univariate models of BPD, stratifying infants into high-, intermediate-, and low-oxygen exposure groups. These groups were then used in multivariate logistic regressions to prospectively predict post-prematurity respiratory disease (PRD), respiratory morbidity score (RMS) in the entire cohort, and pulmonary function z scores (N = 108 subset of infants) at 1-year corrected age. RESULTS: Over the first 14 postnatal days, infants exposed to high oxygen averaged ≥33.1% oxygen, infants exposed to intermediate oxygen averaged 29.1%-33.1%, and infants exposed to low oxygen were below both cutoffs. In multivariate models, infants exposed to high oxygen showed increased PRD and RMS, whereas infants exposed to intermediate oxygen demonstrated increased moderate/severe RMS. Infants in the high/intermediate groups had decreased forced expiratory volume at 0.5 seconds/forced vital capacity ratio. CONCLUSIONS: OxygenAUC14 establishes 3 thresholds of oxygen exposure that risk stratify infants early in their neonatal course, thereby predicting short-term (BPD) and 1-year (PRD, RMS) respiratory morbidity. Infants with greater OxygenAUC14 have altered pulmonary function tests at 1 year of age, indicating early evidence of obstructive lung disease and flow limitation, which may predispose extremely low gestational age newborns to increased long-term pulmonary morbidity. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01435187.


Asunto(s)
Displasia Broncopulmonar/etiología , Oxígeno/efectos adversos , Respiración Artificial/efectos adversos , Displasia Broncopulmonar/fisiopatología , Femenino , Humanos , Lactante , Recién Nacido , Unidades de Cuidado Intensivo Neonatal/estadística & datos numéricos , Masculino , Oxígeno/administración & dosificación , Estudios Prospectivos , Respiración Artificial/métodos , Respiración Artificial/mortalidad , Pruebas de Función Respiratoria , Índice de Severidad de la Enfermedad , Capacidad Vital
6.
Pediatr Res ; 87(7): 1201-1210, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31835269

RESUMEN

BACKGROUND: Supplemental oxygen exposure administered to premature infants is associated with chronic lung disease and abnormal pulmonary function. This study used mild (40%), moderate (60%), and severe (80%) oxygen to determine how hyperoxia-induced changes in lung structure impact pulmonary mechanics in mice. METHODS: C57BL/6J mice were exposed to room air or hyperoxia from birth through postnatal day 8. Baseline pulmonary function and methacholine challenge was assessed at 4 and 8 weeks of age, accompanied by immunohistochemical assessments of both airway (smooth muscle, tethering) and alveolar (simplification, elastin deposition) structure. RESULTS: Mild/moderate hyperoxia increased baseline airway resistance (40% only) and airway hyperreactivity (40 and 60%) at 4 weeks accompanied by increased airway smooth muscle deposition, which resolved at 8 weeks. Severe hyperoxia increased baseline compliance, baseline resistance, and total elastin/surface area ratio without increasing airway hyperreactivity, and was accompanied by increased alveolar simplification, decreased airway tethering, and changes in elastin distribution at both time points. CONCLUSIONS: Mild to moderate hyperoxia causes changes in airway function and airway hyperreactivity with minimal parenchymal response. Severe hyperoxia drives its functional changes through alveolar simplification, airway tethering, and elastin redistribution. These differential responses can be leveraged to further develop hyperoxia mouse models.


Asunto(s)
Hiperoxia/fisiopatología , Pulmón/crecimiento & desarrollo , Mecánica Respiratoria , Animales , Animales Recién Nacidos , Relación Dosis-Respuesta a Droga , Femenino , Pulmón/patología , Rendimiento Pulmonar , Masculino , Cloruro de Metacolina/administración & dosificación , Cloruro de Metacolina/farmacología , Ratones , Ratones Endogámicos C57BL , Agonistas Muscarínicos/administración & dosificación , Agonistas Muscarínicos/farmacología , Músculo Liso/fisiopatología , Alveolos Pulmonares/fisiopatología , Pruebas de Función Respiratoria , Mecánica Respiratoria/efectos de los fármacos , Factores Sexuales
7.
J Stroke Cerebrovasc Dis ; 29(9): 104942, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32807413

RESUMEN

BACKGROUND AND OBJECTIVES: Studies implicate the lung in moderating systemic immune activation via effects on circulating leukocytes. In this study, we investigated whether targeted expression of the antioxidant extracellular superoxide dismutase (SOD3) within the lung would influence post-ischemic peripheral neutrophil activation and CNS reperfusion injury. METHODS: Adult, male mice expressing human SOD3 within type II pneumocytes were subjected to 15 min of transient global cerebral ischemia. Three days post-reperfusion, lung and brain tissue was collected and analyzed by immunohistochemistry for inflammation and injury markers. In vitro motility and neurotoxicity assays were conducted to ascertain the direct effects of hSOD3 on PMN activation. Results were compared against C57BL/6 age and sex-matched controls. RESULTS: Relative to wild-type controls, hSOD3 heterozygous mice exhibited a reduction in lung inflammation, blood-brain barrier damage, and post-ischemic neuronal injury within the hippocampus and cortex. PMNs harvested from hSOD3 mice were also resistant to LPS priming, slower-moving, and less toxic to primary neuronal cultures. CONCLUSIONS: Constitutive, focal expression of hSOD3 is neuroprotective in a model of global cerebral ischemia-reperfusion injury. The underlying mechanism of SOD3-dependent protection is attributable in part to effects on the activation state and toxic potential of circulating neutrophils. These results implicate lung-brain coupling as a determinant of cerebral ischemia-reperfusion injury and highlight post-stroke lung inflammation as a potential therapeutic target in acute ischemic cerebrovascular injuries.


Asunto(s)
Células Epiteliales Alveolares/enzimología , Isquemia Encefálica/enzimología , Encéfalo/metabolismo , Neuronas/metabolismo , Activación Neutrófila , Neutrófilos/metabolismo , Neumonía/prevención & control , Daño por Reperfusión/prevención & control , Superóxido Dismutasa/metabolismo , Células Epiteliales Alveolares/patología , Animales , Encéfalo/patología , Isquemia Encefálica/genética , Isquemia Encefálica/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/patología , Neutrófilos/inmunología , Neumonía/enzimología , Neumonía/genética , Neumonía/inmunología , Daño por Reperfusión/enzimología , Daño por Reperfusión/genética , Daño por Reperfusión/inmunología , Transducción de Señal , Superóxido Dismutasa/genética
8.
Am J Physiol Lung Cell Mol Physiol ; 317(5): L591-L601, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31509427

RESUMEN

Ataxia-telangiectasia (A-T), caused by mutations in the A-T mutated (ATM) gene, is a neurodegenerative disorder affecting ∼1 in 40,000-100,000 children. Recurrent respiratory infections are a common and challenging comorbidity, often leading to the development of bronchiectasis in individuals with A-T. The role of ATM in development of immune memory in response to recurrent respiratory viral infections is not well understood. Here, we infect wild-type (WT) and Atm-null mice with influenza A virus (IAV; HKx31, H3N2) and interrogate the immune memory with secondary infections designed to challenge the B cell memory response with homologous infection (HKx31) and the T cell memory response with heterologous infection (PR8, H1N1). Although Atm-null mice survived primary and secondary infections, they lost more weight than WT mice during secondary infections. This enhanced morbidity to secondary infections was not attributed to failure to effectively clear virus during the primary IAV infection. Instead, Atm-null mice developed persistent peribronchial inflammation, characterized in part by clusters of B220+ B cells. Additionally, levels of select serum antibodies to hemagglutinin-specific IAV were significantly lower in Atm-null than WT mice. These findings reveal that Atm is required to mount a proper memory response to a primary IAV infection, implying that vaccination of children with A-T by itself may not be sufficiently protective against respiratory viral infections.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Virus de la Influenza A/inmunología , Pulmón/inmunología , Mutación , Infecciones por Orthomyxoviridae/inmunología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Pulmón/metabolismo , Pulmón/virología , Ratones , Ratones Noqueados , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología
9.
Am J Physiol Lung Cell Mol Physiol ; 314(5): L846-L859, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29345197

RESUMEN

Supplemental oxygen given to preterm infants has been associated with permanently altering postnatal lung development. Now that these individuals are reaching adulthood, there is growing concern that early life oxygen exposure may also promote cardiovascular disease through poorly understood mechanisms. We previously reported that adult mice exposed to 100% oxygen between postnatal days 0 and 4 develop pulmonary hypertension, defined pathologically by capillary rarefaction, dilation of arterioles and veins, cardiac failure, and a reduced lifespan. Here, Affymetrix Gene Arrays are used to identify early transcriptional changes that take place in the lung before pulmonary capillary rarefaction. We discovered neonatal hyperoxia reduced expression of cardiac muscle genes, including those involved in contraction, calcium signaling, mitochondrial respiration, and vasodilation. Quantitative RT-PCR, immunohistochemistry, and genetic lineage mapping using Myh6CreER; Rosa26RmT/mG mice revealed this reflected loss of pulmonary vein cardiomyocytes. The greatest loss of cadiomyocytes was seen within the lung followed by a graded loss beginning at the hilum and extending into the left atrium. Loss of these cells was seen by 2 wk of age in mice exposed to ≥80% oxygen and was attributed, in part, to reduced proliferation. Administering mitoTEMPO, a scavenger of mitochondrial superoxide during neonatal hyperoxia prevented loss of these cells. Since pulmonary vein cardiomyocytes help pump oxygen-rich blood out of the lung, their early loss following neonatal hyperoxia may contribute to cardiovascular disease seen in these mice, and perhaps in people who were born preterm.


Asunto(s)
Biomarcadores/metabolismo , Hiperoxia/fisiopatología , Hipertensión Pulmonar/patología , Mitocondrias/química , Miocitos Cardíacos/patología , Oxígeno/metabolismo , Venas Pulmonares/patología , Animales , Animales Recién Nacidos , Células Cultivadas , Perfilación de la Expresión Génica , Hipertensión Pulmonar/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Venas Pulmonares/metabolismo
10.
Am J Respir Cell Mol Biol ; 56(4): 453-464, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27967234

RESUMEN

An aberrant oxygen environment at birth increases the severity of respiratory viral infections later in life through poorly understood mechanisms. Here, we show that alveolar epithelial cell (AEC) 2 cells (AEC2s), progenitors for AEC1 cells, are depleted in adult mice exposed to neonatal hypoxia or hyperoxia. Airway cells expressing surfactant protein (SP)-C and ATP binding cassette subfamily A member 3, alveolar pod cells expressing keratin (KRT) 5, and pulmonary fibrosis were observed when these mice were infected with a sublethal dose of HKx31, H3N2 influenza A virus. This was not seen in infected siblings birthed into room air. Genetic lineage tracing studies in mice exposed to neonatal hypoxia or hyperoxia revealed pre-existing secretoglobin 1a1+ cells produced airway cells expressing SP-C and ATP binding cassette subfamily A member 3. Pre-existing Kr5+ progenitor cells produced squamous alveolar cells expressing receptor for advanced glycation endproducts, aquaporin 5, and T1α in alveoli devoid of AEC2s. They were not the source of KRT5+ alveolar pod cells. These oxygen-dependent changes in epithelial cell regeneration and fibrosis could be recapitulated by conditionally depleting AEC2s in mice using diphtheria A toxin and then infecting with influenza A virus. Likewise, airway cells expressing SP-C and alveolar cells expressing KRT5 were observed in human idiopathic pulmonary fibrosis. These findings suggest that alternative progenitor lineages are mobilized to regenerate the alveolar epithelium when AEC2s are severely injured or depleted by previous insults, such as an adverse oxygen environment at birth. Because these lineages regenerate AECs in spatially distinct compartments of a lung undergoing fibrosis, they may not be sufficient to prevent disease.


Asunto(s)
Envejecimiento/metabolismo , Células Epiteliales Alveolares/citología , Linaje de la Célula , Células Madre/citología , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Animales , Animales Recién Nacidos , Linaje de la Célula/efectos de los fármacos , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Queratina-5/metabolismo , Ratones , Modelos Biológicos , Oxígeno/farmacología , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Regeneración/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Uteroglobina/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 313(5): L940-L949, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28798254

RESUMEN

Infants born prematurely often require supplemental oxygen, which contributes to aberrant lung development and increased pulmonary morbidity following a respiratory viral infection. We have been using a mouse model to understand how early-life hyperoxia affects the adult lung response to influenza A virus (IAV) infection. Prior studies showed how neonatal hyperoxia (100% oxygen) increased sensitivity of adult mice to infection with IAV [IAV (A/Hong Kong/X31) H3N2] as defined by persistent inflammation, pulmonary fibrosis, and mortality. Since neonatal hyperoxia alters lung structure, we used a novel fluorescence-expressing reporter strain of H1N1 IAV [A/Puerto Rico/8/34 mCherry (PR8-mCherry)] to evaluate whether it also altered early infection of the respiratory epithelium. Like Hong Kong/X31, neonatal hyperoxia increased morbidity and mortality of adult mice infected with PR8-mCherry. Whole lung imaging and histology suggested a modest increase in mCherry expression in adult mice exposed to neonatal hyperoxia compared with room air-exposed animals. However, this did not reflect an increase in airway or alveolar epithelial infection when mCherry-positive cells were identified and quantified by flow cytometry. Instead, a modest increase in the number of CD45-positive macrophages expressing mCherry was detected. While neonatal hyperoxia does not alter early epithelial infection with IAV, it may increase the activity of macrophages toward infected cells, thereby enhancing early epithelial injury.


Asunto(s)
Hiperoxia/virología , Infecciones por Orthomyxoviridae/virología , Oxígeno/metabolismo , Fibrosis Pulmonar/virología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Epitelio/virología , Humanos , Hiperoxia/patología , Virus de la Influenza A , Pulmón/crecimiento & desarrollo , Pulmón/patología , Pulmón/virología , Ratones Endogámicos C57BL
12.
Stem Cells ; 34(5): 1396-406, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26891117

RESUMEN

Alveolar epithelial type II cells (AEC2) maintain pulmonary homeostasis by producing surfactant, expressing innate immune molecules, and functioning as adult progenitor cells for themselves and alveolar epithelial type I cells (AEC1). How the proper number of alveolar epithelial cells is determined in the adult lung is not well understood. Here, BrdU labeling, genetic lineage tracing, and targeted expression of the anti-oxidant extracellular superoxide dismutase in AEC2s are used to show how the oxygen environment at birth influences postnatal expansion of AEC2s and AEC1s in mice. Birth into low (12%) or high (≥60%) oxygen stimulated expansion of AEC2s through self-renewal and differentiation of the airway Scgb1a1 + lineage. This non-linear or hormesis response to oxygen was specific for the alveolar epithelium because low oxygen stimulated and high oxygen inhibited angiogenesis as defined by changes in V-cadherin and PECAM (CD31). Although genetic lineage tracing studies confirmed adult AEC2s are stem cells for AEC1s, we found no evidence that postnatal growth of AEC1s were derived from self-renewing Sftpc + or the Scbg1a1 + lineage of AEC2s. Taken together, our results show how a non-linear response to oxygen at birth promotes expansion of AEC2s through two distinct lineages. Since neither lineage contributes to the postnatal expansion of AEC1s, the ability of AEC2s to function as stem cells for AEC1s appears to be restricted to the adult lung. Stem Cells 2016;34:1396-1406.


Asunto(s)
Envejecimiento/fisiología , Células Epiteliales Alveolares/citología , Células Epiteliales/citología , Pulmón/citología , Oxígeno/farmacología , Células Madre/citología , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Ratones , Modelos Biológicos
13.
Exp Lung Res ; 43(6-7): 229-239, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28749708

RESUMEN

PURPOSE: Supplemental oxygen (hyperoxia) used to treat individuals in respiratory distress causes cell injury by enhancing the production of toxic reactive oxygen species (ROS) and inhibiting mitochondrial respiration. The suppressor of morphogenesis of genitalia (SMG-1) kinase is activated during hyperoxia and promotes cell survival by phosphorylating the tumor suppressor p53 on serine 15. Here, we investigate whether SMG-1 and p53 blunt this vicious cycle of progressive ROS production and decline in mitochondrial respiration seen during hyperoxia. MATERIALS AND METHODS: Human lung adenocarcinoma A549 and H1299 or colon carcinoma HCT116 cells were depleted of SMG-1, UPF-1, or p53 using RNA interference, and then exposed to room air (21% oxygen) or hyperoxia (95% oxygen). Immunoblotting was used to evaluate protein expression; a Seahorse Bioanalyzer was used to assess cellular respiration; and flow cytometry was used to evaluate fluorescence intensity of cells stained with mitochondrial or redox sensitive dyes. RESULTS: Hyperoxia increased mitochondrial and cytoplasmic ROS and suppressed mitochondrial respiration without changing mitochondrial mass or membrane potential. Depletion of SMG-1 or its cofactor, UPF1, significantly enhanced hyperoxia-induced mitochondrial but not cytosolic ROS abundance. They did not affect mitochondrial mass, membrane potential, or hyperoxia-induced deficits in mitochondrial respiration. Genetic depletion of p53 in A549 cells and ablation of the p53 gene in H1299 or HCT116 cells revealed that SMG-1 influences mitochondrial ROS through activation of p53. CONCLUSIONS: Our findings show that hyperoxia does not promote a vicious cycle of progressive mitochondrial ROS and dysfunction because SMG-1-p53 signaling attenuates production of mitochondrial ROS without preserving respiration. This suggests antioxidant therapies that blunt ROS production during hyperoxia may not suffice to restore cellular respiration.


Asunto(s)
Respiración de la Célula/fisiología , Hiperoxia/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células A549 , Antioxidantes/metabolismo , Línea Celular Tumoral , Células HCT116 , Humanos , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/metabolismo , Oxidación-Reducción , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas , ARN Helicasas/metabolismo , Interferencia de ARN/fisiología , Transactivadores/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
15.
Am J Physiol Lung Cell Mol Physiol ; 308(1): L76-85, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25381024

RESUMEN

Respiratory distress in preterm or low birth weight infants is often treated with supplemental oxygen. However, this therapy can disrupt normal lung development and architecture and alter responses to respiratory insults. Similarly, exposure of newborn mice to 100% oxygen during saccular lung development leads to permanent alveolar simplification, and upon challenge with influenza A virus, mice exhibit reduced host resistance. Natural killer (NK) cells are key players in antiviral immunity, and emerging evidence suggest they also help to maintain homeostasis in peripheral tissues, including the lung, by promoting epithelial cell regeneration via IL-22. We tested the hypothesis that adult mice exposed to hyperoxia as neonates have modified NK cell responses to infection. We report here that mice exposed to neonatal hyperoxia had fewer IL-22(+) NK cells in their lungs after influenza virus challenge and a parallel increase in IFN-γ(+) NK cells. Using reciprocal bone marrow chimeric mice, we show that exposure of either hematopoietic or nonhematopoietic cells was sufficient to increase the severity of infection and to diminish the frequency of IL-22(+) NK cells in the infected lung. Overall, our findings suggest that neonatal hyperoxia leads to long-term changes in the reparative vs. cytotoxic nature of NK cells and that this is due in part to intrinsic changes in hematopoietic cells. These differences may contribute to how oxygen alters the host response to respiratory viral infections.


Asunto(s)
Hiperoxia/inmunología , Inmunidad Celular , Virus de la Influenza A/inmunología , Células Asesinas Naturales/inmunología , Infecciones por Orthomyxoviridae/inmunología , Alveolos Pulmonares/inmunología , Animales , Animales Recién Nacidos , Hiperoxia/patología , Interferón gamma/inmunología , Interleucinas/inmunología , Células Asesinas Naturales/patología , Ratones , Infecciones por Orthomyxoviridae/patología , Alveolos Pulmonares/patología , Interleucina-22
16.
J Immunol ; 191(9): 4720-30, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24078701

RESUMEN

Pneumocystis is an atypical fungal pathogen that causes severe, often fatal pneumonia in immunocompromised patients. Healthy humans and animals also encounter this pathogen, but they generate a protective CD4(+) T cell-dependent immune response that clears the pathogen with little evidence of disease. Pneumocystis organisms attach tightly to respiratory epithelial cells, and in vitro studies have demonstrated that this interaction triggers NF-κB-dependent epithelial cell responses. However, the contribution of respiratory epithelial cells to the normal host response to Pneumocystis remains unknown. IκB kinase 2 (IKK2) is the upstream kinase that is critical for inducible NF-κB activation. To determine whether IKK2-dependent lung epithelial cell (LEC) responses contribute to the anti-Pneumocystis immune response in vivo, transgenic mice with LEC-specific deletion of IKK2 (IKK2(ΔLEC)) were generated. Compared to wild-type mice, IKK2(ΔLEC) mice exhibited a delayed onset of Th17 and B cell responses in the lung and delayed fungal clearance. Importantly, delayed Pneumocystis clearance in IKK2(ΔLEC) mice was associated with an exacerbated immune response, impaired pulmonary function, and altered lung histology. These data demonstrate that IKK2-dependent LEC responses are important regulators of pulmonary adaptive immune responses and are required for optimal host defense against Pneumocystis infection. LECs likely set the threshold for initiation of the pulmonary immune response and serve to prevent exacerbated lung inflammation by promoting the rapid control of respiratory fungal infection.


Asunto(s)
Quinasa I-kappa B/metabolismo , Pneumocystis/inmunología , Neumonía por Pneumocystis/inmunología , Células Th17/inmunología , Animales , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Quinasa I-kappa B/deficiencia , Quinasa I-kappa B/genética , Pulmón/citología , Pulmón/inmunología , Activación de Linfocitos/inmunología , Macrófagos Alveolares/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Mucosa Respiratoria/citología , Mucosa Respiratoria/inmunología
18.
Am J Respir Cell Mol Biol ; 50(4): 757-66, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24188066

RESUMEN

Supplemental oxygen used to treat infants born prematurely disrupts angiogenesis and is a risk factor for persistent pulmonary disease later in life. Although it is unclear how neonatal oxygen affects development of the respiratory epithelium, alveolar simplification and depletion of type II cells has been observed in adult mice exposed to hyperoxia between postnatal Days 0 and 4. Because hyperoxia inhibits cell proliferation, we hypothesized that it depleted the adult lung of type II cells by inhibiting their proliferation at birth. Newborn mice were exposed to room air (RA) or hyperoxia, and the oxygen-exposed mice were recovered in RA. Hyperoxia stimulated mRNA expressed by type II (Sftpc, Abca3) and type I (T1α, Aquaporin 5) cells and inhibited Pecam expressed by endothelial cells. 5-Bromo-2'-deoxyuridine labeling and fate mapping with enhanced green fluorescence protein controlled statically by the Sftpc promoter or conditionally by the Scgb1a1 promoter revealed increased Sftpc and Abca3 mRNA seen on Day 4 reflected an increase in expansion of type II cells shortly after birth. When mice were returned to RA, this expanded population of type II cells was slowly depleted until few were detected by 8 weeks. These findings reveal that hyperoxia stimulates alveolar epithelial cell expansion when it disrupts angiogenesis. The loss of type II cells during recovery in RA may contribute to persistent pulmonary diseases such as those reported in children born preterm who were exposed to supplemental oxygen.


Asunto(s)
Células Epiteliales Alveolares/patología , Proliferación Celular , Hiperoxia/patología , Alveolos Pulmonares/patología , Células Epiteliales Alveolares/metabolismo , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Hiperoxia/genética , Hiperoxia/metabolismo , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Alveolos Pulmonares/metabolismo , Proteína C Asociada a Surfactante Pulmonar/genética , ARN Mensajero/metabolismo , Factores de Tiempo , Uteroglobina/genética , Proteína Fluorescente Roja
20.
Am J Physiol Lung Cell Mol Physiol ; 307(7): L516-23, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25150061

RESUMEN

Premature infants requiring supplemental oxygen are at increased risk for developing bronchopulmonary dysplasia (BPD). Rodent models involving neonatal exposure to excessive oxygen concentrations (hyperoxia) have helped to identify mechanisms of BPD-associated pathology. Genome-wide assessments of the effects of hyperoxia in neonatal mouse lungs could identify novel BPD-related genes and pathways. Newborn C57BL/6 mice were exposed to 100% oxygen for 10 days, and whole lung tissue RNA was used for high-throughput, sequencing-based transcriptomic analysis (RNA-Seq). Significance Analysis of Microarrays and Ingenuity Pathway Analysis were used to identify genes and pathways affected. Expression patterns for selected genes were validated by qPCR. Mechanistic relationships between genes were further tested in cultured mouse lung epithelial cells. We identified 300 genes significantly and substantially affected following acute neonatal hyperoxia. Canonical pathways dysregulated in hyperoxia lungs included nuclear factor (erythryoid-derived-2)-like 2-mediated oxidative stress signaling, p53 signaling, eNOS signaling, and aryl hydrocarbon receptor (Ahr) pathways. Cluster analysis identified Ccnd1, Cdkn1a, and Ahr as critical regulatory nodes in the response to hyperoxia, with Ahr serving as the major effector node. A mechanistic role for Ahr was assessed in lung epithelial cells, and we confirmed its ability to regulate the expression of multiple hyperoxia markers, including Cdkn1a, Pdgfrb, and A2m. We conclude that a global assessment of gene regulation in the acute neonatal hyperoxia model of BPD-like pathology has identified Ahr as one driver of gene dysregulation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hiperoxia/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Transcriptoma , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Línea Celular , Análisis por Conglomerados , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Genoma , Humanos , Hiperoxia/genética , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA