Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cell ; 187(2): 481-494.e24, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38194965

RESUMEN

Cellular form and function emerge from complex mechanochemical systems within the cytoplasm. Currently, no systematic strategy exists to infer large-scale physical properties of a cell from its molecular components. This is an obstacle to understanding processes such as cell adhesion and migration. Here, we develop a data-driven modeling pipeline to learn the mechanical behavior of adherent cells. We first train neural networks to predict cellular forces from images of cytoskeletal proteins. Strikingly, experimental images of a single focal adhesion (FA) protein, such as zyxin, are sufficient to predict forces and can generalize to unseen biological regimes. Using this observation, we develop two approaches-one constrained by physics and the other agnostic-to construct data-driven continuum models of cellular forces. Both reveal how cellular forces are encoded by two distinct length scales. Beyond adherent cell mechanics, our work serves as a case study for integrating neural networks into predictive models for cell biology.


Asunto(s)
Proteínas del Citoesqueleto , Aprendizaje Automático , Adhesión Celular , Citoplasma/metabolismo , Proteínas del Citoesqueleto/metabolismo , Adhesiones Focales/metabolismo , Modelos Biológicos
2.
Nat Immunol ; 24(6): 1007-1019, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37069398

RESUMEN

Adoptive transfer of genetically engineered chimeric antigen receptor (CAR) T cells is becoming a promising treatment option for hematological malignancies. However, T cell immunotherapies have mostly failed in individuals with solid tumors. Here, with a CRISPR-Cas9 pooled library, we performed an in vivo targeted loss-of-function screen and identified ST3 ß-galactoside α-2,3-sialyltransferase 1 (ST3GAL1) as a negative regulator of the cancer-specific migration of CAR T cells. Analysis of glycosylated proteins revealed that CD18 is a major effector of ST3GAL1 in activated CD8+ T cells. ST3GAL1-mediated glycosylation induces the spontaneous nonspecific tissue sequestration of T cells by altering lymphocyte function-associated antigen-1 (LFA-1) endocytic recycling. Engineered CAR T cells with enhanced expression of ßII-spectrin, a central LFA-1-associated cytoskeleton molecule, reversed ST3GAL1-mediated nonspecific T cell migration and reduced tumor growth in mice by improving tumor-specific homing of CAR T cells. These findings identify the ST3GAL1-ßII-spectrin axis as a major cell-intrinsic program for cancer-targeting CAR T cell migration and as a promising strategy for effective T cell immunotherapy.


Asunto(s)
Receptores Quiméricos de Antígenos , Animales , Ratones , Linfocitos T CD8-positivos , Línea Celular Tumoral , Movimiento Celular , Inmunoterapia Adoptiva , Antígeno-1 Asociado a Función de Linfocito , Espectrina , Humanos , Femenino
3.
Nat Rev Mol Cell Biol ; 16(8): 486-98, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26130009

RESUMEN

Actomyosin-mediated contractility is a highly conserved mechanism for generating mechanical stress in animal cells and underlies muscle contraction, cell migration, cell division and tissue morphogenesis. Whereas actomyosin-mediated contractility in striated muscle is well understood, the regulation of such contractility in non-muscle and smooth muscle cells is less certain. Our increased understanding of the mechanics of actomyosin arrays that lack sarcomeric organization has revealed novel modes of regulation and force transmission. This work also provides an example of how diverse mechanical behaviours at cellular scales can arise from common molecular components, underscoring the need for experiments and theories to bridge the molecular to cellular length scales.


Asunto(s)
Actomiosina/fisiología , Forma de la Célula , Animales , Humanos , Mecanotransducción Celular , Contracción Muscular , Miocitos del Músculo Liso/fisiología , Miocitos del Músculo Liso/ultraestructura , Estructura Cuaternaria de Proteína
4.
Proc Natl Acad Sci U S A ; 120(42): e2305283120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37819979

RESUMEN

From flocks of birds to biomolecular assemblies, systems in which many individual components independently consume energy to perform mechanical work exhibit a wide array of striking behaviors. Methods to quantify the dynamics of these so-called active systems generally aim to extract important length or time scales from experimental fields. Because such methods focus on extracting scalar values, they do not wring maximal information from experimental data. We introduce a method to overcome these limitations. We extend the framework of correlation functions by taking into account the internal headings of displacement fields. The functions we construct represent the material response to specific types of active perturbation within the system. Utilizing these response functions we query the material response of disparate active systems composed of actin filaments and myosin motors, from model fluids to living cells. We show we can extract critical length scales from the turbulent flows of an active nematic, anticipate contractility in an active gel, distinguish viscous from viscoelastic dissipation, and even differentiate modes of contractility in living cells. These examples underscore the vast utility of this method which measures response functions from experimental observations of complex active systems.


Asunto(s)
Citoesqueleto de Actina , Miosinas , Actomiosina/fisiología
5.
6.
Biophys J ; 123(2): 157-171, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38062704

RESUMEN

The actomyosin cytoskeleton generates mechanical forces that power important cellular processes, such as cell migration, cell division, and mechanosensing. Actomyosin self-assembles into contractile networks and bundles that underlie force generation and transmission in cells. A central step is the assembly of the myosin II filament from myosin monomers, regulation of which has been extensively studied. However, myosin filaments are almost always found as clusters within the cell cortex. While recent studies characterized cluster nucleation dynamics at the cell periphery, how myosin clusters grow on stress fibers remains poorly characterized. Here, we utilize a U2OS osteosarcoma cell line with endogenously tagged myosin II to measure the myosin cluster size distribution in the lamella of adherent cells. We find that myosin clusters can grow with Rho-kinase (ROCK) activity alone in the absence of myosin motor activity. Time-lapse imaging reveals that myosin clusters grow via increased myosin association to existing clusters, which is potentiated by ROCK-dependent myosin filament assembly. Enabling myosin motor activity allows further myosin cluster growth through myosin association that is dependent on F-actin architecture. Using a toy model, we show that myosin self-affinity is sufficient to recapitulate the experimentally observed myosin cluster size distribution, and that myosin cluster sizes are determined by the pool of myosin available for cluster growth. Together, our findings provide new insights into the regulation of myosin cluster sizes within the lamellar actomyosin cytoskeleton.


Asunto(s)
Actinas , Actomiosina , Actinas/metabolismo , Actomiosina/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Miosina Tipo II/metabolismo
7.
Biophys J ; 122(18): 3678-3689, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37218133

RESUMEN

Directed transport of cellular components is often dependent on the processive movements of cytoskeletal motors. Myosin 2 motors predominantly engage actin filaments of opposing orientation to drive contractile events and are therefore not traditionally viewed as processive. However, recent in vitro experiments with purified nonmuscle myosin 2 (NM2) demonstrated myosin 2 filaments could move processively. Here, we establish processivity as a cellular property of NM2. Processive runs in central nervous system-derived CAD cells are most apparent on bundled actin in protrusions that terminate at the leading edge. We find that processive velocities in vivo are consistent with in vitro measurements. NM2 makes these processive runs in its filamentous form against lamellipodia retrograde flow, though anterograde movement can still occur in the absence of actin dynamics. Comparing the processivity of NM2 isoforms, we find that NM2A moves slightly faster than NM2B. Finally, we demonstrate that this is not a cell-specific property, as we observe processive-like movements of NM2 in the lamella and subnuclear stress fibers of fibroblasts. Collectively, these observations further broaden NM2 functionality and the biological processes in which the already ubiquitous motor can contribute.


Asunto(s)
Actinas , Citoesqueleto , Actinas/fisiología , Citoesqueleto de Actina , Proteínas del Citoesqueleto , Miosina Tipo II
8.
EMBO J ; 38(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30478193

RESUMEN

We investigated the cell behaviors that drive morphogenesis of the Drosophila follicular epithelium during expansion and elongation of early-stage egg chambers. We found that cell division is not required for elongation of the early follicular epithelium, but drives the tissue toward optimal geometric packing. We examined the orientation of cell divisions with respect to the planar tissue axis and found a bias toward the primary direction of tissue expansion. However, interphase cell shapes demonstrate the opposite bias. Hertwig's rule, which holds that cell elongation determines division orientation, is therefore broken in this tissue. This observation cannot be explained by the anisotropic activity of the conserved Pins/Mud spindle-orienting machinery, which controls division orientation in the apical-basal axis and planar division orientation in other epithelial tissues. Rather, cortical tension at the apical surface translates into planar division orientation in a manner dependent on Canoe/Afadin, which links actomyosin to adherens junctions. These findings demonstrate that division orientation in different axes-apical-basal and planar-is controlled by distinct, independent mechanisms in a proliferating epithelium.


Asunto(s)
Polaridad Celular , Forma de la Célula , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Epitelio/crecimiento & desarrollo , Interfase , Folículo Ovárico/citología , Animales , División Celular , Proliferación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Epitelio/metabolismo , Femenino , Folículo Ovárico/fisiología , Huso Acromático
9.
J Cell Sci ; 134(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34910818

RESUMEN

Septins are GTP-binding proteins that assemble into hetero-oligomers. They can interact with each other end-to-end to form filaments, making them the fourth element of the cytoskeleton. To update the current knowledge on the ever-increasing implications of these fascinating proteins in cellular functions, a hundred expert scientists from across the globe gathered from 12 to 15 October 2021 in Berlin for the first hybrid-format (on site and virtual) EMBO workshop Molecular and Cell Biology of Septins.


Asunto(s)
Proteínas de Unión al GTP , Septinas , Berlin , Citoesqueleto/metabolismo , Proteínas de Unión al GTP/metabolismo , Microtúbulos/metabolismo , Septinas/genética , Septinas/metabolismo
10.
Proc Natl Acad Sci U S A ; 117(22): 12306-12314, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32439709

RESUMEN

Tissue-resident memory CD8 T (TRM) cells are a unique immune memory subset that develops and remains in peripheral tissues at the site of infection, providing future host resistance upon reexposure to that pathogen. In the pulmonary system, TRM are identified through S1P antagonist CD69 and expression of integrins CD103/ß7 and CD49a/CD29(ß1). Contrary to the established role of CD69 on CD8 T cells, the functions of CD103 and CD49a on this population are not well defined. This study examines the expression patterns and functions of CD103 and CD49a with a specific focus on their impact on T cell motility during influenza virus infection. We show that the TRM cell surface phenotype develops by 2 wk postinfection, with the majority of the population expressing CD49a and a subset that is also positive for CD103. Despite a previously established role in retaining TRM in peripheral tissues, CD49a facilitates locomotion of virus-specific CD8 T cells, both in vitro and in vivo. These results demonstrate that CD49a may contribute to local surveillance mechanisms of the TRM population.


Asunto(s)
Antígenos CD/inmunología , Subtipo H3N2 del Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Cadenas alfa de Integrinas/inmunología , Integrina alfa1/metabolismo , Animales , Antígenos CD/genética , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Adhesión Celular , Movimiento Celular , Humanos , Memoria Inmunológica , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/genética , Gripe Humana/fisiopatología , Gripe Humana/virología , Cadenas alfa de Integrinas/genética , Integrina alfa1/genética , Ratones Endogámicos C57BL
11.
Proc Natl Acad Sci U S A ; 115(11): 2646-2651, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29487208

RESUMEN

The ability of adherent cells to sense changes in the mechanical properties of their extracellular environments is critical to numerous aspects of their physiology. It has been well documented that cell attachment and spreading are sensitive to substrate stiffness. Here, we demonstrate that this behavior is actually biphasic, with a transition that occurs around a Young's modulus of ∼7 kPa. Furthermore, we demonstrate that, contrary to established assumptions, this property is independent of myosin II activity. Rather, we find that cell spreading on soft substrates is inhibited due to reduced myosin-II independent nascent adhesion formation within the lamellipodium. Cells on soft substrates display normal leading-edge protrusion activity, but these protrusions are not stabilized due to impaired adhesion assembly. Enhancing integrin-ECM affinity through addition of Mn2+ recovers nascent adhesion assembly and cell spreading on soft substrates. Using a computational model to simulate nascent adhesion assembly, we find that biophysical properties of the integrin-ECM bond are optimized to stabilize interactions above a threshold matrix stiffness that is consistent with the experimental observations. Together, these results suggest that myosin II-independent forces in the lamellipodium are responsible for mechanosensation by regulating new adhesion assembly, which, in turn, directly controls cell spreading. This myosin II-independent mechanism of substrate stiffness sensing could potentially regulate a number of other stiffness-sensitive processes.


Asunto(s)
Miosina Tipo II/química , Miosina Tipo II/metabolismo , Seudópodos/química , Seudópodos/metabolismo , Animales , Fenómenos Biomecánicos , Adhesión Celular , Movimiento Celular , Matriz Extracelular/metabolismo , Ratones , Células 3T3 NIH
12.
PLoS Comput Biol ; 15(6): e1007077, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31163027

RESUMEN

The ability of adherent cells to form adhesions is critical to numerous phases of their physiology. The assembly of adhesions is mediated by several types of integrins. These integrins differ in physical properties, including rate of diffusion on the plasma membrane, rapidity of changing conformation from bent to extended, affinity for extracellular matrix ligands, and lifetimes of their ligand-bound states. However, the way in which nanoscale physical properties of integrins ensure proper adhesion assembly remains elusive. We observe experimentally that both ß-1 and ß-3 integrins localize in nascent adhesions at the cell leading edge. In order to understand how different nanoscale parameters of ß-1 and ß-3 integrins mediate proper adhesion assembly, we therefore develop a coarse-grained computational model. Results from the model demonstrate that morphology and distribution of nascent adhesions depend on ligand binding affinity and strength of pairwise interactions. Organization of nascent adhesions depends on the relative amounts of integrins with different bond kinetics. Moreover, the model shows that the architecture of an actin filament network does not perturb the total amount of integrin clustering and ligand binding; however, only bundled actin architectures favor adhesion stability and ultimately maturation. Together, our results support the view that cells can finely tune the expression of different integrin types to determine both structural and dynamic properties of adhesions.


Asunto(s)
Adhesión Celular/fisiología , Integrinas , Modelos Biológicos , Membrana Celular/química , Membrana Celular/metabolismo , Células Cultivadas , Biología Computacional , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fibroblastos/citología , Humanos , Integrinas/química , Integrinas/metabolismo , Integrinas/fisiología , Cinética , Simulación de Dinámica Molecular
13.
PLoS Comput Biol ; 11(3): e1004076, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25748431

RESUMEN

Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs.


Asunto(s)
Citoesqueleto de Actina/química , Actinas/química , Modelos Biológicos , Fibras de Estrés/química , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Línea Celular Tumoral , Humanos , Procesamiento de Imagen Asistido por Computador , Microscopía de Fuerza Atómica , Fibras de Estrés/metabolismo , Estrés Mecánico
14.
Biophys J ; 107(4): 825-33, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25140417

RESUMEN

Cells generate mechanical stresses via the action of myosin motors on the actin cytoskeleton. Although the molecular origin of force generation is well understood, we currently lack an understanding of the regulation of force transmission at cellular length scales. Here, using 3T3 fibroblasts, we experimentally decouple the effects of substrate stiffness, focal adhesion density, and cell morphology to show that the total amount of work a cell does against the substrate to which it is adhered is regulated by the cell spread area alone. Surprisingly, the number of focal adhesions and the substrate stiffness have little effect on regulating the work done on the substrate by the cell. For a given spread area, the local curvature along the cell edge regulates the distribution and magnitude of traction stresses to maintain a constant strain energy. A physical model of the adherent cell as a contractile gel under a uniform boundary tension and mechanically coupled to an elastic substrate quantitatively captures the spatial distribution and magnitude of traction stresses. With a single choice of parameters, this model accurately predicts the cell's mechanical output over a wide range of cell geometries.


Asunto(s)
Adhesión Celular/fisiología , Fibroblastos/citología , Fibroblastos/fisiología , Células 3T3 , Resinas Acrílicas/química , Animales , Fenómenos Biomecánicos , Técnicas de Cultivo de Célula , Elasticidad , Técnica del Anticuerpo Fluorescente , Ratones , Microscopía Confocal , Modelos Biológicos , Estrés Mecánico , Andamios del Tejido/química
15.
J Cell Biol ; 223(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-38889096

RESUMEN

Immune cells are highly dynamic and able to migrate through environments with diverse biochemical and mechanical compositions. Their migration has classically been defined as amoeboid under the assumption that it is integrin independent. Here, we show that activated primary Th1 T cells require both confinement and extracellular matrix proteins to migrate efficiently. This migration is mediated through small and dynamic focal adhesions that are composed of the same proteins associated with canonical mesenchymal cell focal adhesions, such as integrins, talin, and vinculin. These focal adhesions, furthermore, localize to sites of contractile traction stresses, enabling T cells to pull themselves through confined spaces. Finally, we show that Th1 T cells preferentially follow tracks of other T cells, suggesting that these adhesions modify the extracellular matrix to provide additional environmental guidance cues. These results demonstrate not only that the boundaries between amoeboid and mesenchymal migration modes are ambiguous, but that integrin-mediated focal adhesions play a key role in T cell motility.


Asunto(s)
Movimiento Celular , Matriz Extracelular , Adhesiones Focales , Integrinas , Talina , Adhesiones Focales/metabolismo , Animales , Integrinas/metabolismo , Talina/metabolismo , Ratones , Matriz Extracelular/metabolismo , Vinculina/metabolismo , Ratones Endogámicos C57BL , Linfocitos T/inmunología , Linfocitos T/metabolismo , Activación de Linfocitos , Adhesión Celular
16.
Mol Biol Cell ; 35(5): ar65, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38507238

RESUMEN

α-catenin (α-cat) displays force-dependent unfolding and binding to actin filaments through direct and indirect means, but features of adherens junction structure and function most vulnerable to loss of these allosteric mechanisms have not been directly compared. By reconstituting an α-cat F-actin-binding domain unfolding mutant known to exhibit enhanced binding to actin (α-cat-H0-FABD+) into α-cat knockout Madin Darby Canine Kidney (MDCK) cells, we show that partial loss of the α-cat catch bond mechanism (via an altered H0 α-helix) leads to stronger epithelial sheet integrity with greater colocalization between the α-cat-H0-FABD+ mutant and actin. α-cat-H0-FABD+ -expressing cells are less efficient at closing scratch-wounds, suggesting reduced capacity for more dynamic cell-cell coordination. Evidence that α-cat-H0-FABD+ is equally accessible to the conformationally sensitive α18 antibody epitope as WT α-cat and shows similar vinculin recruitment suggests this mutant engages lower tension cortical actin networks, as its M-domain is not persistently open. Conversely, α-cat-M-domain salt-bridge mutants with persistent recruitment of vinculin and phosphorylated myosin light chain show only intermediate monolayer adhesive strengths, but display less directionally coordinated and thereby slower migration speeds during wound-repair. These data show α-cat M- and FABD-unfolding mutants differentially impact cell-cell cohesion and migration properties, and suggest signals favoring α-cat-cortical actin interaction without persistent M-domain opening may improve epithelial monolayer strength through enhanced coupling to lower tension actin networks.


Asunto(s)
Citoesqueleto de Actina , Actinas , Movimiento Celular , Células Epiteliales , alfa Catenina , Perros , Animales , alfa Catenina/metabolismo , alfa Catenina/genética , Células de Riñón Canino Madin Darby , Actinas/metabolismo , Células Epiteliales/metabolismo , Citoesqueleto de Actina/metabolismo , Unión Proteica , Dominios Proteicos , Mutación , Uniones Adherentes/metabolismo , Desplegamiento Proteico , Adhesión Celular/fisiología , Vinculina/metabolismo
17.
J Cell Biol ; 223(4)2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38353656

RESUMEN

The ability to dynamically assemble contractile networks is required throughout cell physiology, yet direct biophysical mechanisms regulating non-muscle myosin 2 filament assembly in living cells are lacking. Here, we use a suite of dynamic, quantitative imaging approaches to identify deterministic factors that drive myosin filament appearance and amplification. We find that actin dynamics regulate myosin assembly, but that the static actin architecture plays a less clear role. Instead, remodeling of actin networks modulates the local myosin monomer levels and facilitates assembly through myosin:myosin-driven interactions. Using optogenetically controlled myosin, we demonstrate that locally concentrating myosin is sufficient to both form filaments and jump-start filament amplification and partitioning. By counting myosin monomers within filaments, we demonstrate a myosin-facilitated assembly process that establishes filament stacks prior to partitioning into clusters that feed higher-order networks. Together, these findings establish the biophysical mechanisms regulating the assembly of non-muscle contractile structures that are ubiquitous throughout cell biology.


Asunto(s)
Citoesqueleto de Actina , Actinas , Miosina Tipo II , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Ratones , Fibroblastos , Humanos , Células HEK293 , Miosina Tipo II/metabolismo
18.
Biophys J ; 104(8): 1709-19, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23601318

RESUMEN

Dynamic regulation of the actin cytoskeleton is required for diverse cellular processes. Proteins regulating the assembly kinetics of the cytoskeletal biopolymer F-actin are known to impact the architecture of actin cytoskeletal networks in vivo, but the underlying mechanisms are not well understood. Here, we demonstrate that changes to actin assembly kinetics with physiologically relevant proteins profilin and formin (mDia1 and Cdc12) have dramatic consequences on the architecture and gelation kinetics of otherwise biochemically identical cross-linked F-actin networks. Reduced F-actin nucleation rates promote the formation of a sparse network of thick bundles, whereas increased nucleation rates result in a denser network of thinner bundles. Changes to F-actin elongation rates also have marked consequences. At low elongation rates, gelation ceases and a solution of rigid bundles is formed. By contrast, rapid filament elongation accelerates dynamic arrest and promotes gelation with minimal F-actin density. These results are consistent with a recently developed model of how kinetic constraints regulate network architecture and underscore how molecular control of polymer assembly is exploited to modulate cytoskeletal architecture and material properties.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Actinas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Microfilamentos/metabolismo , Multimerización de Proteína , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Animales , Pollos , Cinética , Profilinas/metabolismo
19.
Curr Biol ; 33(9): R339-R341, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37160086

RESUMEN

Sala and Oakes introduce LIM domain proteins and discuss their roles in transcription, cytokinesis, adhesion, motility and mechanosignaling.


Asunto(s)
Citocinesis , Proteínas con Dominio LIM , Proteínas con Dominio LIM/genética
20.
Int J Biochem Cell Biol ; 161: 106442, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37348811

RESUMEN

In addition to biochemical and electrochemical signaling, cells also rely extensively on mechanical signaling to regulate their behavior. While a number of tools have been adapted from physics and engineering to manipulate cell mechanics, they typically require specialized equipment or lack spatiotemporal precision. Alternatively, a recent, more elegant approach is to use light itself to modulate the mechanical equilibrium inside the cell. This approach leverages the power of optogenetics, which can be controlled in a fully reversible manner in both time and space, to tune RhoA signaling, the master regulator of cellular contractility. We review here the fundamentals of this approach, including illustrating the tunability and flexibility that optogenetics offers, and demonstrate how this tool can be used to modulate both internal cytoskeletal flows and contractile force generation. Together these features highlight the advantages that optogenetics offers for investigating mechanical interactions in cells.


Asunto(s)
Mecanotransducción Celular , Transducción de Señal , Transducción de Señal/fisiología , Contracción Muscular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA