Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Cell ; 79(4): 645-659.e9, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32692974

RESUMEN

Stress granules (SGs) are membrane-less ribonucleoprotein condensates that form in response to various stress stimuli via phase separation. SGs act as a protective mechanism to cope with acute stress, but persistent SGs have cytotoxic effects that are associated with several age-related diseases. Here, we demonstrate that the testis-specific protein, MAGE-B2, increases cellular stress tolerance by suppressing SG formation through translational inhibition of the key SG nucleator G3BP. MAGE-B2 reduces G3BP protein levels below the critical concentration for phase separation and suppresses SG initiation. Knockout of the MAGE-B2 mouse ortholog or overexpression of G3BP1 confers hypersensitivity of the male germline to heat stress in vivo. Thus, MAGE-B2 provides cytoprotection to maintain mammalian spermatogenesis, a highly thermosensitive process that must be preserved throughout reproductive life. These results demonstrate a mechanism that allows for tissue-specific resistance against stress and could aid in the development of male fertility therapies.


Asunto(s)
Gránulos Citoplasmáticos/genética , ADN Helicasas/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Biosíntesis de Proteínas , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/genética , Estrés Fisiológico/genética , Regiones no Traducidas 5' , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/patología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/metabolismo , Femenino , Células HCT116 , Células HeLa , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Espermatogonias/citología , Espermatogonias/patología , Testículo/citología , Testículo/metabolismo
2.
Development ; 148(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33929507

RESUMEN

The stem cell-containing undifferentiated spermatogonial population in mammals, which ensures continual sperm production, arises during development from prospermatogonial precursors. Although a period of quiescence is known to occur in prospermatogonia prior to postnatal spermatogonial transition, the importance of this has not been defined. Here, using mouse models with conditional knockout of the master cell cycle regulator Rb1 to disrupt normal timing of the quiescence period, we found that failure to initiate mitotic arrest during fetal development leads to prospermatogonial apoptosis and germline ablation. Outcomes of single-cell RNA-sequencing analysis indicate that oxidative phosphorylation activity and inhibition of meiotic initiation are disrupted in prospermatogonia that fail to enter quiescence on a normal timeline. Taken together, these findings suggest that key layers of programming are laid down during the quiescent period in prospermatogonia to ensure proper fate specification and fitness in postnatal life.


Asunto(s)
División Celular/fisiología , Espermatogonias/citología , Espermatogonias/crecimiento & desarrollo , Células Madre/citología , Animales , Apoptosis , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Proteínas de Unión a Retinoblastoma/genética , Análisis de Secuencia de ARN , Espermatogénesis/fisiología , Espermatogonias/metabolismo , Espermatozoides , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 117(39): 24195-24204, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32929012

RESUMEN

Spermatogonial stem cell transplantation (SSCT) is an experimental technique for transfer of germline between donor and recipient males that could be used as a tool for biomedical research, preservation of endangered species, and dissemination of desirable genetics in food animal populations. To fully realize these potentials, recipient males must be devoid of endogenous germline but possess normal testicular architecture and somatic cell function capable of supporting allogeneic donor stem cell engraftment and regeneration of spermatogenesis. Here we show that male mice, pigs, goats, and cattle harboring knockout alleles of the NANOS2 gene generated by CRISPR-Cas9 editing have testes that are germline ablated but otherwise structurally normal. In adult pigs and goats, SSCT with allogeneic donor stem cells led to sustained donor-derived spermatogenesis. With prepubertal mice, allogeneic SSCT resulted in attainment of natural fertility. Collectively, these advancements represent a major step toward realizing the enormous potential of surrogate sires as a tool for dissemination and regeneration of germplasm in all mammalian species.


Asunto(s)
Células Madre Germinales Adultas/trasplante , Proteínas de Unión al ARN/fisiología , Espermatogénesis , Animales , Bovinos , Femenino , Cabras , Masculino , Ratones , Ratones Noqueados , Porcinos , Testículo/anatomía & histología , Testículo/fisiología , Trasplante Homólogo
4.
Biol Reprod ; 106(6): 1175-1190, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35244684

RESUMEN

Spermatogenic regeneration is key for male fertility and relies on activities of an undifferentiated spermatogonial population. Here, a high-throughput approach with primary cultures of mouse spermatogonia was devised to rapidly predict alterations in functional capacity. Combining the platform with a large-scale RNAi screen of transcription factors, we generated a repository of new information from which pathway analysis was able to predict candidate molecular networks regulating regenerative functions. Extending from this database, the SRCAP-CREBBP/EP300 (Snf2-related CREBBP activator protein-CREB binding protein/E1A binding protein P300) complex was found to mediate differential levels of histone acetylation between stem cell and progenitor spermatogonia to influence expression of key self-renewal genes including the previously undescribed testis-specific transcription factor ZSCAN2 (zinc finger and SCAN domain containing 2). Single cell RNA sequencing analysis revealed that ZSCAN2 deficiency alters key cellular processes in undifferentiated spermatogonia such as translation, chromatin modification, and ubiquitination. In Zscan2 knockout mice, while spermatogenesis was moderately impacted during steady state, regeneration after cytotoxic insult was significantly impaired. Altogether, these findings have validated the utility of our high-throughput screening approach and have generated a transcription factor database that can be utilized for uncovering novel mechanisms governing spermatogonial functions.


Asunto(s)
Espermatogénesis , Espermatogonias , Animales , Diferenciación Celular , Masculino , Ratones , Espermatogénesis/fisiología , Células Madre , Testículo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Genes Dev ; 28(12): 1351-62, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24939937

RESUMEN

The maintenance of cycling cell lineages relies on undifferentiated subpopulations consisting of stem and progenitor pools. Features that delineate these cell types are undefined for many lineages, including spermatogenesis, which is supported by an undifferentiated spermatogonial population. Here, we generated a transgenic mouse line in which spermatogonial stem cells are marked by expression of an inhibitor of differentiation 4 (Id4)-green fluorescent protein (Gfp) transgene. We found that Id4-Gfp(+) cells exist primarily as a subset of the type A(single) pool, and their frequency is greatest in neonatal development and then decreases in proportion during establishment of the spermatogenic lineage, eventually comprising ∼ 2% of the undifferentiated spermatogonial population in adulthood. RNA sequencing analysis revealed that expression of 11 and 25 genes is unique for the Id4-Gfp(+)/stem cell and Id4-Gfp(-)/progenitor fractions, respectively. Collectively, these findings provide the first definitive evidence that stem cells exist as a rare subset of the A(single) pool and reveal transcriptome features distinguishing stem cell and progenitor states within the mammalian male germline.


Asunto(s)
Células Germinativas/citología , Proteínas Inhibidoras de la Diferenciación/metabolismo , Células Madre/citología , Testículo/citología , Animales , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Inhibidoras de la Diferenciación/genética , Masculino , Ratones , Ratones Transgénicos , Espermatogénesis/genética , Espermatogonias/metabolismo , Células Madre/metabolismo , Testículo/metabolismo , Transcriptoma
6.
Development ; 144(4): 624-634, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28087628

RESUMEN

Spermatogenesis is a classic model of cycling cell lineages that depend on a balance between stem cell self-renewal for continuity and the formation of progenitors as the initial step in the production of differentiated cells. The mechanisms that guide the continuum of spermatogonial stem cell (SSC) to progenitor spermatogonial transition and precise identifiers of subtypes in the process are undefined. Here we used an Id4-eGfp reporter mouse to discover that EGFP intensity is predictive of the subsets, with the ID4-EGFPBright population being mostly, if not purely, SSCs, whereas the ID4-EGFPDim population is in transition to the progenitor state. These subsets are also distinguishable by transcriptome signatures. Moreover, using a conditional overexpression mouse model, we found that transition from the stem cell to the immediate progenitor state requires downregulation of Id4 coincident with a major change in the transcriptome. Collectively, our results demonstrate that the level of ID4 is predictive of stem cell or progenitor capacity in spermatogonia and dictates the interface of transition between the different functional states.


Asunto(s)
Regulación de la Expresión Génica , Proteínas Inhibidoras de la Diferenciación/fisiología , Espermatogénesis , Espermatogonias/citología , Células Madre/citología , Animales , Diferenciación Celular , Autorrenovación de las Células , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Testículo/metabolismo , Transcriptoma , Transgenes
7.
Dev Biol ; 432(2): 229-236, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29037932

RESUMEN

The onset of spermatogenesis occurs in response to retinoic acid (RA), the active metabolite of vitamin A. However, whether RA plays any role during establishment of the spermatogonial stem cell (SSC) pool is unknown. Because designation of the SSC population and the onset of RA signaling in the testis that induces differentiation have similar timing, this study asked whether RA influenced SSC establishment. Whole mount immunofluorescence and flow cytometric analysis using the Id4-eGfp transgenic reporter mouse line revealed an enrichment for ID4-EGFP+ cells within the testis following inhibition of RA synthesis by WIN 18,446 treatment. Transplantation analyses confirmed a significant increase in the number of SSCs in testes from RA-deficient animals. Conversely, no difference in the ID4-EGFP+ population or change in SSC number were detected following exposure to an excess of RA. Collectively, reduced RA altered the number of SSCs present in the neonatal testis but precocious RA exposure in the neonatal testis did not, suggesting that RA deficiency causes a greater proportion of progenitor undifferentiated spermatogonia to retain their SSC state past the age when the pool is thought to be determined.


Asunto(s)
Espermatogénesis/fisiología , Tretinoina/metabolismo , Células Madre Germinales Adultas/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Transducción de Señal/efectos de los fármacos , Espermatogénesis/genética , Espermatogonias/citología , Testículo/metabolismo
8.
PLoS Genet ; 11(10): e1005569, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26496357

RESUMEN

Skeletal dysplasias are a common, genetically heterogeneous cause of short stature that can result from disruptions in many cellular processes. We report the identification of the lesion responsible for skeletal dysplasia and male infertility in the spontaneous, recessive mouse mutant chagun. We determined that Poc1a, encoding protein of the centriole 1a, is disrupted by the insertion of a processed Cenpw cDNA, which is flanked by target site duplications, suggestive of a LINE-1 retrotransposon-mediated event. Mutant fibroblasts have impaired cilia formation and multipolar spindles. Male infertility is caused by defective spermatogenesis early in meiosis and progressive germ cell loss. Spermatogonial stem cell transplantation studies revealed that Poc1a is essential for normal function of both Sertoli cells and germ cells. The proliferative zone of the growth plate is small and disorganized because chondrocytes fail to re-align after cell division and undergo increased apoptosis. Poc1a and several other genes associated with centrosome function can affect the skeleton and lead to skeletal dysplasias and primordial dwarfisms. This mouse mutant reveals how centrosome dysfunction contributes to defects in skeletal growth and male infertility.


Asunto(s)
Proteínas del Citoesqueleto/genética , Enanismo/genética , Infertilidad Masculina/genética , Elementos de Nucleótido Esparcido Largo/genética , Espermatogénesis/genética , Animales , Proteínas de Ciclo Celular , Centriolos/genética , Centrosoma/metabolismo , Proteínas Cromosómicas no Histona/genética , Enanismo/patología , Humanos , Infertilidad Masculina/patología , Masculino , Meiosis/genética , Ratones , Proteínas/genética , Proteínas/metabolismo , Células de Sertoli/metabolismo , Espermatogonias/metabolismo
9.
Development ; 140(2): 280-90, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23221369

RESUMEN

Continuity of cycling cell lineages relies on the activities of undifferentiated stem cell-containing subpopulations. Transition to a differentiating state must occur periodically in a fraction of the population to supply mature cells, coincident with maintenance of the undifferentiated state in others to sustain a foundational stem cell pool. At present, molecular mechanisms regulating these activities are poorly defined for most cell lineages. Spermatogenesis is a model process that is supported by an undifferentiated spermatogonial population and transition to a differentiating state involves attained expression of the KIT receptor. We found that impaired function of the X chromosome-clustered microRNAs 221 and 222 (miR-221/222) in mouse undifferentiated spermatogonia induces transition from a KIT(-) to a KIT(+) state and loss of stem cell capacity to regenerate spermatogenesis. Both Kit mRNA and KIT protein abundance are influenced by miR-221/222 function in spermatogonia. Growth factors that promote maintenance of undifferentiated spermatogonia upregulate miR-221/222 expression; whereas exposure to retinoic acid, an inducer of spermatogonial differentiation, downregulates miR-221/222 abundance. Furthermore, undifferentiated spermatogonia overexpressing miR-221/222 are resistant to retinoic acid-induced transition to a KIT(+) state and are incapable of differentiation in vivo. These findings indicate that miR-221/222 plays a crucial role in maintaining the undifferentiated state of mammalian spermatogonia through repression of KIT expression.


Asunto(s)
Células Germinativas/citología , MicroARNs/fisiología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Animales , Apoptosis , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Citometría de Flujo/métodos , Humanos , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Cromosomas Sexuales , Espermatogénesis , Espermatogonias/patología , Células Madre , Tretinoina/farmacología
10.
Biol Reprod ; 95(1): 14, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27251094

RESUMEN

Continual and robust spermatogenesis relies on the actions of an undifferentiated spermatogonial population that contains stem cells. A remarkable feature of spermatogonial stem cells (SSCs) is the capacity to regenerate spermatogenesis following isolation from a donor testis and transplantation into a permissive recipient testis. This capacity has enormous potential as a tool for enhancing the reproductive capacity of livestock, which can improve production efficiency. Because SSCs are a rare subset of the undifferentiated spermatogonial population, a period of in vitro amplification in number following isolation from donor testicular tissue is essential. Here, we describe methodology for isolation of a cell fraction from prepubertal bull testes that is enriched for undifferentiated spermatogonia and long-term maintenance of the cells in both the feeder cell coculture and the feeder-free format. To achieve this method, we derived bovine fetal fibroblasts (BFF) to serve as feeders for optimizing medium conditions that promote maintenance of bovine undifferentiated spermatogonia for at least 2 mo. In addition, we devised a feeder-free system with BFF-conditioned medium that sustained bovine undifferentiated spermatogonia for at least 1 mo in vitro. The methodologies described could be optimized to provide platforms for exponential expansion of bovine SSCs that will provide the numbers needed for transplantation into recipient testes.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Espermatogénesis/fisiología , Espermatogonias/citología , Células Madre/citología , Testículo/citología , Animales , Bovinos , Células Cultivadas , Medios de Cultivo , Masculino
11.
Biol Reprod ; 95(6): 117, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27733379

RESUMEN

Precise separation of spermatogonial stem cells (SSCs) from progenitor spermatogonia that lack stem cell activity and are committed to differentiation remains a challenge. To distinguish between these spermatogonial subtypes, we identified genes that exhibited bimodal mRNA levels at the single-cell level among undifferentiated spermatogonia from Postnatal Day 6 mouse testes, including Tspan8, Epha2, and Pvr, each of which encode cell surface proteins useful for cell selection. Transplantation studies provided definitive evidence that a TSPAN8-high subpopulation is enriched for SSCs. RNA-seq analyses identified genes differentially expressed between TSPAN8-high and -low subpopulations that clustered into multiple biological pathways potentially involved in SSC renewal or differentiation, respectively. Methyl-seq analysis identified hypomethylated domains in the promoters of these genes in both subpopulations that colocalized with peaks of histone modifications defined by ChIP-seq analysis. Taken together, these results demonstrate functional heterogeneity among mouse undifferentiated spermatogonia and point to key biological characteristics that distinguish SSCs from progenitor spermatogonia.


Asunto(s)
Células Madre Germinales Adultas/citología , Testículo/citología , Tetraspaninas/metabolismo , Células Madre Germinales Adultas/metabolismo , Animales , Biomarcadores/metabolismo , Ciclo Celular/fisiología , Perfilación de la Expresión Génica , Masculino , Ratones , Receptor EphA2/genética , Receptor EphA2/metabolismo , Espermatogénesis , Testículo/metabolismo , Tetraspaninas/genética
12.
J Cell Sci ; 126(Pt 4): 1009-20, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23239029

RESUMEN

Continual spermatogenesis relies on the activities of a tissue-specific stem cell population referred to as spermatogonial stem cells (SSCs). Fate decisions of stem cells are influenced by their niche environments, a major component of which is soluble factors secreted by support cells. At present, the factors that constitute the SSC niche are undefined. We explored the role of chemokine (C-X-C motif) ligand 12 (CXCL12) signaling via its receptor C-X-C chemokine receptor type 4 (CXCR4) in regulation of mouse SSC fate decisions. Immunofluorescent staining for CXCL12 protein in cross sections of testes from both pup and adult mice revealed its localization at the basement membrane of seminiferous tubules. Within the undifferentiated spermatogonial population of mouse testes, a fraction of cells were found to express CXCR4 and possess stem cell capacity. Inhibition of CXCR4 signaling in primary cultures of mouse undifferentiated spermatogonia resulted in SSC loss, in part by reducing proliferation and increasing the transition to a progenitor state primed for differentiation upon stimulation by retinoic acid. In addition, CXCL12-CXCR4 signaling in mouse SSCs was found to be important for colonization of recipient testes following transplantation, possibly by influencing homing to establish stem-cell niches. Furthermore, inhibition of CXCR4 signaling in testes of adult mice impaired SSC maintenance, leading to loss of the germline. Collectively, these findings indicate that CXCL12 is an important component of the growth factor milieu of stem cells in mammalian testes and that it signals via the CXCR4 to regulate maintenance of the SSC pool.


Asunto(s)
Quimiocina CXCL12/metabolismo , Receptores CXCR4/metabolismo , Espermatogonias/citología , Animales , Western Blotting , Proliferación Celular , Células Cultivadas , Quimiocina CXCL12/genética , Citometría de Flujo , Inmunohistoquímica , Masculino , Ratones , Receptores CXCR4/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espermatogénesis/genética , Espermatogénesis/fisiología
13.
Biol Reprod ; 89(5): 113, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24089198

RESUMEN

Continual spermatogenesis is the cornerstone of male fertility and relies on the actions of an undifferentiated spermatogonial population comprised of stem cells and progenitors. A foundational spermatogonial stem cell (SSC) pool is established during postnatal development that serves as a self-renewing reservoir from which progenitor spermatogonia arise that transiently amplify in number before committing to terminal differentiation. At present, the underlying molecular mechanisms governing these actions are undefined. Using conditional mutant mouse models, we investigated whether function of the undifferentiated spermatogonial population during postnatal life is influenced by the tumor suppressor protein RB1. Spermatogenesis initiates in mice with conditional inactivation of Rb1 in prospermatogonial precursors, but the germline is progressively lost upon aging due to impaired renewal of the undifferentiated spermatogonial population. In contrast, continual spermatogenesis is sustained following Rb1 inactivation in progenitor spermatogonia, but some cells transform into a carcinoma in situ-like state. Furthermore, knockdown of Rb1 abundance within primary cultures of wild-type undifferentiated spermatogonia impairs maintenance of the SSC pool, and some cells are invasive of the basement membrane after transplant into recipient testes, indicating acquisition of tumorigenic properties. Collectively, these findings indicate that RB1 plays an essential role in establishment of a self-renewing SSC pool and commitment to the spermatogenic lineage within progenitor spermatogonia.


Asunto(s)
Proliferación Celular , Proteína de Retinoblastoma/fisiología , Espermatogénesis/genética , Espermatozoides/fisiología , Células Madre/fisiología , Animales , Animales Recién Nacidos , Atrofia/genética , Femenino , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína de Retinoblastoma/genética , Células Madre/citología , Testículo/patología
14.
Nat Commun ; 14(1): 2111, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069147

RESUMEN

In sexual reproduction, sperm contribute half the genomic material required for creation of offspring yet core molecular mechanisms essential for their formation are undefined. Here, the α-arrestin molecule arrestin-domain containing 5 (ARRDC5) is identified as an essential regulator of mammalian spermatogenesis. Multispecies testicular tissue transcriptome profiling indicates that expression of Arrdc5 is testis enriched, if not specific, in mice, pigs, cattle, and humans. Knockout of Arrdc5 in mice leads to male specific sterility due to production of low numbers of sperm that are immotile and malformed. Spermiogenesis, the final phase of spermatogenesis when round spermatids transform to spermatozoa, is defective in testes of Arrdc5 deficient mice. Also, epididymal sperm in Arrdc5 knockouts are unable to capacitate and fertilize oocytes. These findings establish ARRDC5 as an essential regulator of mammalian spermatogenesis. Considering the role of arrestin molecules as modulators of cellular signaling and ubiquitination, ARRDC5 is a potential male contraceptive target.


Asunto(s)
Arrestinas , Infertilidad Masculina , Testículo , Animales , Bovinos , Humanos , Masculino , Ratones , Arrestinas/genética , Arrestinas/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Ratones Noqueados , Morfogénesis , Semen/metabolismo , Espermatogénesis/genética , Espermatozoides/metabolismo , Porcinos , Testículo/metabolismo
15.
Biol Reprod ; 86(5): 164, 1-11, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22378757

RESUMEN

Spermatogenesis relies on coordinated differentiation of stem and progenitor spermatogonia, and the transcription factor STAT3 is essential for this process in mammals. Here we studied the THY1+ spermatogonial population in mouse testes, which contains spermatogonial stem cells (SSC) and non-stem cell progenitor spermatogonia, to further define the downstream mechanism regulating differentiation. Transcript abundance for the bHLH transcription factor Neurog3 was found to be significantly reduced upon transient inhibition of STAT3 signaling in these cells and exposure to GDNF, a key growth factor regulating self-renewal of SSCs, suppressed activation of STAT3 and in accordance Neurog3 gene expression. Moreover, STAT3 was found to bind the distal Neurog3 promoter/enhancer region in THY1+ spermatogonia and regulate transcription. Transient inhibition of Neurog3 expression in cultures of proliferating THY1+ spermatogonia increased stem cell content after several self-renewal cycles without effecting overall proliferation of the cells, indicating impaired differentiation of SSCs to produce progenitor spermatogonia. Furthermore, cultured THY1+ spermatogonia with induced deficiency of Neurog3 were found to be incapable of differentiation in vivo following transplantation into testes of recipient mice. Collectively, these results establish a mechanism by which activation of STAT3 regulates the expression of NEUROG3 to subsequently drive differentiation of SSC and progenitor spermatogonia in the mammalian germline.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Proteínas del Tejido Nervioso/fisiología , Factor de Transcripción STAT3/fisiología , Espermatogénesis/fisiología , Espermatogonias/fisiología , Células Madre/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Masculino , Ratones , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas , Espermatogénesis/efectos de los fármacos , Espermatogonias/efectos de los fármacos , Células Madre/efectos de los fármacos , Antígenos Thy-1/análisis
16.
Front Vet Sci ; 9: 894075, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928111

RESUMEN

The undifferentiated spermatogonial population in mammalian testes contains a spermatogonial stem cell (SSC) population that can regenerate continual spermatogenesis following transplantation. This capacity has the potential to be exploited as a surrogate sires breeding tool to achieve widespread dissemination of desirable genetics in livestock production. Because SSCs are relatively rare in testicular tissue, the ability to expand a population in vitro would be advantageous to provide large numbers for transplantation into surrogate recipient males. Here, we evaluated conditions that would support long-term in-vitro maintenance of undifferentiated spermatogonia from a goat breed that is endemic to Kenyan livestock production. Single-cell suspensions enriched for undifferentiated spermatogonia from pre-pubertal bucks were seeded on laminin-coated tissue culture plates and maintained in a commercial media based on serum-free composition. The serum-free media was conditioned on goat fetal fibroblasts and supplemented with a growth factor cocktail that included glial cell line-derived neurotrophic factor (GDNF), leukemia inhibitory factor (LIF), stromal cell-derived factor (SDF), and fibroblast growth factor (FGF) before use. Over 45 days, the primary cultures developed a cluster morphology indicative of in-vitro grown undifferentiated spermatogonia from other species and expressed the germ cell marker VASA, as well as the previously defined spermatogonial marker such as promyelocytic leukemia zinc finger (PLZF). Taken together, these findings provide a methodology for isolating the SSC containing undifferentiated spermatogonial population from goat testes and long-term maintenance in defined culture conditions.

17.
Biol Reprod ; 84(4): 639-45, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21084712

RESUMEN

Sustained spermatogenesis in adult males relies on the activity of spermatogonial stem cells (SSCs). In general, tissue-specific stem cell populations such as SSCs are influenced by contributions of support cells that form niche microenvironments. Previous studies have provided indirect evidence that several somatic cell populations and the interstitial vasculature influence SSC functions, but an individual orchestrator of niches has not been described. In this study, functional transplantation of SSCs, in combination with experimental alteration of Sertoli cell content by polythiouracil (PTU)-induced transient hypothyroidism, was used to explore the relationship of Sertoli cells with SSCs in testes of adult mice. Transplantation of SSCs from PTU-treated donor mice into seminiferous tubules of normal recipient mice revealed a greater than 3-fold increase in SSCs compared to those from testes of non-PTU-treated donors. In addition, use of PTU-treated mice as recipients for transplantation of SSCs from normal donors revealed a greater than 3-fold increase of accessible niches compared to those of testes of non-PTU treated recipient mice with normal numbers of Sertoli cells. Importantly, the area of seminiferous tubules bordered by interstitial tissue and percentage of seminiferous tubules associated with blood vessels was found to be no different in testes of PTU-treated mice compared to controls, indicating that neither the vasculature nor interstitial support cell populations influenced the alteration of niche number. Collectively, these results provide direct evidence that Sertoli cells are the key somatic cell population dictating the number of SSCs and niches in mammalian testes.


Asunto(s)
Células Madre Adultas/citología , Células de Sertoli/citología , Espermatogonias/citología , Testículo/citología , Células Madre Adultas/trasplante , Animales , Antitiroideos/farmacología , Recuento de Células , Diferenciación Celular , Linaje de la Célula , Proliferación Celular/efectos de los fármacos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Propiltiouracilo/farmacología , Túbulos Seminíferos/anatomía & histología , Túbulos Seminíferos/irrigación sanguínea , Túbulos Seminíferos/efectos de los fármacos , Células de Sertoli/efectos de los fármacos , Espermatogénesis , Espermatogonias/trasplante , Testículo/irrigación sanguínea , Testículo/efectos de los fármacos
18.
Biol Reprod ; 85(2): 347-56, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21543770

RESUMEN

Continual spermatogenesis at a quantitatively normal level is required to sustain male fertility. The foundation of this process relies on maintenance of an undifferentiated spermatogonial population consisting of spermatogonial stem cells (SSCs) that self-renew as well as transient amplifying progenitors produced by differentiation. In mammals, type A(single) spermatogonia form the SSC population, but molecular markers distinguishing these from differentiating progenitors are undefined and knowledge of mechanisms regulating their functions is limited. We show that in the mouse male germline the transcriptional repressor ID4 is expressed by a subpopulation of undifferentiated spermatogonia and selectively marks A(single) spermatogonia. In addition, we found that ID4 expression is up-regulated in isolated SSC-enriched fractions by stimulation from GDNF, a key growth factor driving self-renewal. In mice lacking ID4 expression, quantitatively normal spermatogenesis was found to be impaired due to progressive loss of the undifferentiated spermatogonial population during adulthood. Moreover, reduction of ID4 expression by small interfering RNA treatment abolished the ability of wild-type SSCs to expand in vitro during long-term culture without affecting their survival. Collectively, these results indicate that ID4 is a distinguishing marker of SSCs in the mammalian germline and plays an important role in the regulation of self-renewal.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas Inhibidoras de la Diferenciación/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Biomarcadores , Silenciador del Gen , Proteínas Inhibidoras de la Diferenciación/genética , Masculino , Ratones , ARN Interferente Pequeño , Espermatogonias/metabolismo , Testículo/metabolismo
19.
Stem Cell Reports ; 16(6): 1555-1567, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33961790

RESUMEN

Maintenance and self-renewal of the spermatogonial stem cell (SSC) population is the cornerstone of male fertility. Here, we have identified a key role for the nucleosome remodeling protein CHD4 in regulating SSC function. Gene expression analyses revealed that CHD4 expression is highly enriched in the SSC population in the mouse testis. Using spermatogonial transplantation techniques it was established that loss of Chd4 expression significantly impairs SSC regenerative capacity, causing a ∼50% reduction in colonization of recipient testes. An scRNA-seq comparison revealed reduced expression of "self-renewal" genes following Chd4 knockdown, along with increased expression of signature progenitor genes. Co-immunoprecipitation analyses demonstrated that CHD4 regulates gene expression in spermatogonia not only through its traditional association with the remodeling complex NuRD, but also via interaction with the GDNF-responsive transcription factor SALL4. Cumulatively, the results of this study depict a previously unappreciated role for CHD4 in controlling fate decisions in the spermatogonial pool.


Asunto(s)
Células Madre Germinales Adultas/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Células Madre/metabolismo , Testículo/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Autorrenovación de las Células , ADN Helicasas/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen/métodos , Masculino , Ratones , Ratones Endogámicos , Transcriptoma
20.
Biol Reprod ; 82(6): 1103-11, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20181621

RESUMEN

Continual spermatogenesis relies on a pool of spermatogonial stem cells (SSCs) that possess the capacity for self-renewal and differentiation. Maintenance of this pool depends on survival of SSCs throughout the lifetime of a male. Response to extrinsic stimulation from glial cell line-derived neurotrophic factor (GDNF), mediated by the PIK3/AKT signaling cascade, is a key pathway of SSC survival. In this study, we found that expression of the POU domain transcription factor POU3F1 in cultured SSCs is up-regulated via this mechanism. Reduction of Pou3f1 gene expression by short interfering RNA (siRNA) treatment induced apoptosis in cultured germ cell populations, and transplantation analyses revealed impaired SSC maintenance in vitro. POU3F1 expression was localized to spermatogonia in cross-sections of prepubertal and adult testes, implying a similar role in vivo. Through comparative analyses, we found that expression of POU5F1, another POU transcription factor implicated as essential for SSC self-renewal, is not regulated by GDNF in cultured SSCs. Transplantation analyses following siRNA treatment showed that POU5F1 expression is not essential for SSC maintenance in vitro. Additionally, expression of NODAL, a putative autocrine regulator of POU5F1 expression in mouse germ cells, could not be detected in SSCs isolated from testes or cultured SSCs. Collectively, these results indicate that POU3F1, but not POU5F1, is an intrinsic regulator of GDNF-induced survival and self-renewal of mouse SSCs.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Espermatogénesis , Espermatogonias/metabolismo , Células Madre/metabolismo , Animales , Apoptosis , Comunicación Autocrina , División Celular , Supervivencia Celular , Masculino , Ratones , Proteína Nodal/análisis , Testículo/citología , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA