RESUMEN
OBJECTIVE: Vascular and bleeding complications after transcatheter aortic valve implantation (TAVI) are common and lead to increased morbidity and mortality. Analysis of plaque at the arterial access site may improve prediction of complications. METHODS: We investigated the association between demographic and procedural risk factors for Valve Academic Research Consortium (VARC-3) vascular complications in patients undergoing transfemoral TAVI with use of a vascular closure device (ProGlide® or MANTA®) in this retrospective cohort study. The ability of pre-procedure femoral CT angiography to predict complications was investigated including a novel method of quantifying plaque composition of the common femoral artery using plaque maps created with patient specific X-ray attenuation cut-offs. RESULTS: 23 vascular complications occurred in the 299 patients in the study group (7.7%). There were no demographic risk factors associated with vascular complications and no statistical difference between use of closure device (ProGlide® vs MANTA®) and vascular complications. Vascular complications after TAVI were associated with sheath size (OR 1.36, 95% CI 1.08-1.76, P 0.01) and strongly associated with CT-derived necrotic core volume in the common femoral artery of the procedural side (OR 17.49, 95% CI 1.21-226.60, P 0.03). CONCLUSION: Plaque map analysis of the common femoral artery by CT angiography reveals patients with greater necrotic core are at increased risk of VARC-3 vascular complications. ADVANCES IN KNOWLEDGE: The novel measurement of necrotic core volume in the common femoral artery on the procedural side by CT analysis was associated with post-TAVI vascular complications, which can be used to highlight increased risk.
Asunto(s)
Estenosis de la Válvula Aórtica , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Reemplazo de la Válvula Aórtica Transcatéter/métodos , Arteria Femoral/diagnóstico por imagen , Arteria Femoral/cirugía , Estudios Retrospectivos , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/cirugía , Tomografía Computarizada por Rayos X , Resultado del Tratamiento , Válvula AórticaRESUMEN
OBJECTIVES: Ruptured carotid plaque causes stroke, but differentiating rupture-prone necrotic core from fibrous tissue with CT is limited by overlap of X-ray attenuation. We investigated the ability of CT-derived plaque maps created from ratios of plaque/contrast attenuation to identify histologically proven vulnerable plaques. METHODS: Seventy patients underwent carotid CT angiography and carotid endarterectomy. A derivation cohort of 20 patients had CT images matched with histology and carotid plaque components attenuation defined. In a validation cohort of 50 patients, CT-derived plaque maps were compared in 43 symptomatic vs 40 asymptomatic carotid plaques and accuracy detecting vulnerable plaques calculated. RESULTS: In 250 plaque areas co-registered with histology, the median attenuation (HU) of necrotic core 43(26-63), fibrous plaque 127(110-162) and calcified plaque 964 (816-1207) created significantly different ratios of plaque/contrast attenuation. CT-derived plaque maps revealed symptomatic plaques had larger necrotic core than asymptomatic (13.5%(5.9-33.3) vs 7.4%(2.3-14.3), p = 0.004) with large necrotic core predicting symptoms (area under ROC curve 0.68, p = 0.004). Twenty-four of 47 carotid plaques were histologically classified as most vulnerable (Starry-Type VI). Plaque maps revealed Type VI plaques had a greater necrotic core volume than Type IV/V plaques and a necrotic core/fibrous plaque ratio >0.5 distinguished Type VI plaques with sensitivity 75.0% (55.1-88.0) and specificity of 39.1% (22.2-59.2). CONCLUSIONS: Carotid plaque components can be differentiated by CT using a ratio of plaque/contrast attenuation. CT-derived plaque map volumes of necrotic core help distinguished the most vulnerable plaques. ADVANCES IN KNOWLEDGE: CT-derived plaque maps based on plaque/contrast attenuation may provide new markers of carotid plaque vulnerability.
Asunto(s)
Estenosis Carotídea , Endarterectomía Carotidea , Placa Aterosclerótica , Accidente Cerebrovascular , Humanos , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/patología , Arterias Carótidas/diagnóstico por imagen , Fibrosis , Tomografía Computarizada por Rayos X/métodos , Estenosis Carotídea/diagnóstico por imagen , Estenosis Carotídea/patologíaRESUMEN
AIM: To determine the radiation dose and image quality in coronary computed tomography angiography (CCTA) using state-of-the-art dose reduction methods in unselected "real world" patients. METHODS: In this single-centre study, consecutive patients in sinus rhythm underwent CCTA for suspected coronary artery disease (CAD) using a 320-row detector CT scanner. All patients underwent the standard CT acquisition protocol at our institute (Morriston Hospital) a combination of dose saving advances including prospective electrocardiogram-gating, automated tube current modulation, tube voltage reduction, heart rate reduction, and the most recent novel adaptive iterative dose reconstruction 3D (AIDR3D) algorithm. The cohort comprised real-world patients for routine CCTA who were not selected on age, body mass index, or heart rate. Subjective image quality was graded on a 4-point scale (4 = excellent, 1 = non-diagnostic). RESULTS: A total of 543 patients were included in the study with a mean body weight of 81 ± 18 kg and a pre-scan mean heart rate of 70 ± 11 beats per minute (bpm). When indicated, patients received rate-limiting medication with an oral beta-blocker followed by additional intravenous beta-blocker to achieve a heart rate below 65 bpm. The median effective radiation dose was 0.88 mSv (IQR, 0.6-1.4 mSv) derived from a Dose Length Product of 61.45 mGy.cm (IQR, 42.86-100.00 mGy.cm). This also includes what we believe to be the lowest ever-reported radiation dose for a routine clinical CCTA (0.18 mSv). The mean image quality (± SD) was 3.65 ± 0.61, with a subjective image quality score of 3 ("good") or above for 93% of patient CCTAs. CONCLUSION: Combining a low-dose scan protocol and AIDR3D with a 320-detector row CT scanner can provide high quality images at exceptionally low radiation dose in unselected patients being investigated for CAD.