Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2322203121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968122

RESUMEN

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)-a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single-cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to current and future antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.


Asunto(s)
Análisis de la Célula Individual , Masculino , Humanos , Análisis de la Célula Individual/métodos , Animales , Ratones , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Antígenos de Superficie/metabolismo , Antígenos de Superficie/genética , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Adenocarcinoma/tratamiento farmacológico , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/patología , Carcinoma Neuroendocrino/metabolismo , Carcinoma Neuroendocrino/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico
2.
BMC Med Educ ; 24(1): 587, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807106

RESUMEN

PURPOSE: Physician-scientists play a crucial role in advancing biomedical sciences. Proportionally fewer physicians are actively engaged in scientific pursuits, attributed to attrition in the training and retention pipeline. This national study evaluated the ongoing and longer-term impact of the COVID-19 pandemic on stress levels, research productivity, and optimism for physician-scientists at all levels of training. METHODS: A multi-institutional cross-sectional survey of medical students, graduate students, and residents/fellows/junior faculty (RFJF) was conducted from April to August 2021 to assess the impact of COVID-19 on individual stress, productivity, and optimism. Multivariate regression analyses were performed to identify associated variables and unsupervised variable clustering techniques were employed to identify highly correlated responses. RESULTS: A total 677 respondents completed the survey, representing different stages of physician-scientist training. Respondents report high levels of stress (medical students: 85%, graduate students: 63%, RFJF: 85%) attributed to impaired productivity concerns, concern about health of family and friends, impact on personal health and impairment in training or career development. Many cited impaired productivity (medical students: 65% graduate students: 79%, RFJF: 78%) associated with pandemic impacts on training, labs closures and loss of facility/resource access, and social isolation. Optimism levels were low (medical students: 37%, graduate students: 38% and RFJF: 39%) with females less likely to be optimistic and more likely to report concerns of long-term effects of COVID-19. Optimism about the future was correlated with not worrying about the long-term effects of COVID-19. Since the COVID-19 pandemic, all respondents reported increased prioritization of time with family/friends (67%) and personal health (62%) over career (25%) and research (24%). CONCLUSIONS: This national survey highlights the significant and protracted impact of the COVID-19 pandemic on stress levels, productivity, and optimism among physician-scientists and trainees. These findings underscore the urgent need for tailored support, including mental health, academic, and career development assistance for this biomedical workforce.


Asunto(s)
Investigación Biomédica , COVID-19 , Estudiantes de Medicina , Humanos , COVID-19/epidemiología , Estudios Transversales , Femenino , Masculino , Estudiantes de Medicina/psicología , Adulto , Pandemias , Docentes Médicos/psicología , Encuestas y Cuestionarios , Estrés Psicológico/epidemiología , Investigadores/psicología , Investigadores/educación , SARS-CoV-2 , Optimismo , Médicos/psicología
3.
EBioMedicine ; 101: 105028, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422982

RESUMEN

BACKGROUND: Understanding formation of the human tissue resident memory T cell (TRM) repertoire requires longitudinal access to human non-lymphoid tissues. METHODS: By applying flow cytometry and next generation sequencing to serial blood, lymphoid tissue, and gut samples from 16 intestinal transplantation (ITx) patients, we assessed the origin, distribution, and specificity of human TRMs at phenotypic and clonal levels. FINDINGS: Donor age ≥1 year and blood T cell macrochimerism (peak level ≥4%) were associated with delayed establishment of stable recipient TRM repertoires in the transplanted ileum. T cell receptor (TCR) overlap between paired gut and blood repertoires from ITx patients was significantly greater than that in healthy controls, demonstrating increased gut-blood crosstalk after ITx. Crosstalk with the circulating pool remained high for years of follow-up. TCR sequences identifiable in pre-Tx recipient gut but not those in lymphoid tissues alone were more likely to populate post-Tx ileal allografts. Clones detected in both pre-Tx gut and lymphoid tissue had distinct transcriptional profiles from those identifiable in only one tissue. Recipient T cells were distributed widely throughout the gut, including allograft and native colon, which had substantial repertoire overlap. Both alloreactive and microbe-reactive recipient T cells persisted in transplanted ileum, contributing to the TRM repertoire. INTERPRETATION: Our studies reveal human intestinal TRM repertoire establishment from the circulation, preferentially involving lymphoid tissue counterparts of recipient intestinal T cell clones, including TRMs. We have described the temporal and spatial dynamics of this active crosstalk between the circulating pool and the intestinal TRM pool. FUNDING: This study was funded by the National Institute of Allergy and Infectious Diseases (NIAID) P01 grant AI106697.


Asunto(s)
Células T de Memoria , Receptores de Antígenos de Linfocitos T , Humanos , Íleon , Aloinjertos , Memoria Inmunológica , Linfocitos T CD8-positivos
4.
bioRxiv ; 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38559080

RESUMEN

Diffuse Midline Gliomas (DMGs) are universally fatal, primarily pediatric malignancies affecting the midline structures of the central nervous system. Despite decades of clinical trials, treatment remains limited to palliative radiation therapy. A major challenge is the coexistence of molecularly distinct malignant cell states with potentially orthogonal drug sensitivities. To address this challenge, we leveraged established network-based methodologies to elucidate Master Regulator (MR) proteins representing mechanistic, non-oncogene dependencies of seven coexisting subpopulations identified by single-cell analysis-whose enrichment in essential genes was validated by pooled CRISPR/Cas9 screens. Perturbational profiles of 372 clinically relevant drugs helped identify those able to invert the activity of subpopulation-specific MRs for follow-up in vivo validation. While individual drugs predicted to target individual subpopulations-including avapritinib, larotrectinib, and ruxolitinib-produced only modest tumor growth reduction in orthotopic models, systemic co-administration induced significant survival extension, making this approach a valuable contribution to the rational design of combination therapy.

5.
J Exp Med ; 221(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38091025

RESUMEN

The site of transition between tissue-resident memory (TRM) and circulating phenotypes of T cells is unknown. We integrated clonotype, alloreactivity, and gene expression profiles of graft-repopulating recipient T cells in the intestinal mucosa at the single-cell level after human intestinal transplantation. Host-versus-graft (HvG)-reactive T cells were mainly distributed to TRM, effector T (Teff)/TRM, and T follicular helper compartments. RNA velocity analysis demonstrated a trajectory from TRM to Teff/TRM clusters in association with rejection. By integrating pre- and post-transplantation (Tx) mixed lymphocyte reaction-determined alloreactive repertoires, we observed that pre-existing HvG-reactive T cells that demonstrated tolerance in the circulation were dominated by TRM profiles in quiescent allografts. Putative de novo HvG-reactive clones showed a transcriptional profile skewed to cytotoxic effectors in rejecting grafts. Inferred protein regulon network analysis revealed upstream regulators that accounted for the effector and tolerant T cell states. We demonstrate Teff/TRM interchangeability for individual T cell clones with known (allo)recognition in the human gut, providing novel insight into TRM biology.


Asunto(s)
Tolerancia Inmunológica , Linfocitos T , Humanos , Trasplante Homólogo , Células Clonales , Memoria Inmunológica
6.
Sci Rep ; 14(1): 1458, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38228729

RESUMEN

Novel perioperative strategies are needed to reduce recurrence rates in patients undergoing nephrectomy for high-risk, non-metastatic clear cell renal cell carcinoma (ccRCC). We conducted a prospective, phase I trial of neoadjuvant nivolumab prior to nephrectomy in 15 evaluable patients with non-metastatic ccRCC. We leveraged tissue from that cohort to elucidate the effects of PD-1 inhibition on immune cell populations in ccRCC and correlate the evolving immune milieu with anti-PD-1 response. We found that nivolumab durably induces a pro-inflammatory state within the primary tumor, and baseline immune infiltration within the primary tumor correlates with nivolumab responsiveness. Nivolumab increases CTLA-4 expression in the primary tumor, and subsequent nephrectomy increases circulating concentrations of sPD-L1, sPD-L3 (sB7-H3), and s4-1BB. These findings form the basis to consider neoadjuvant immune checkpoint inhibition (ICI) for high-risk ccRCC while the tumor remains in situ and provide the rationale for perioperative strategies of novel ICI combinations.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Nivolumab/farmacología , Carcinoma de Células Renales/tratamiento farmacológico , Terapia Neoadyuvante , Estudios Prospectivos
7.
bioRxiv ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38645034

RESUMEN

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)--a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis (TMA) on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated, but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer (SCLC) subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to novel antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA