Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mov Disord ; 39(3): 526-538, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38214203

RESUMEN

BACKGROUND: Pathogenic variants in several genes have been linked to genetic forms of isolated or combined dystonia. The phenotypic and genetic spectrum and the frequency of pathogenic variants in these genes have not yet been fully elucidated, neither in patients with dystonia nor with other, sometimes co-occurring movement disorders such as Parkinson's disease (PD). OBJECTIVES: To screen >2000 patients with dystonia or PD for rare variants in known dystonia-causing genes. METHODS: We screened 1207 dystonia patients from Germany (DysTract consortium), Spain, and South Korea, and 1036 PD patients from Germany for pathogenic variants using a next-generation sequencing gene panel. The impact on DNA methylation of KMT2B variants was evaluated by analyzing the gene's characteristic episignature. RESULTS: We identified 171 carriers (109 with dystonia [9.0%]; 62 with PD [6.0%]) of 131 rare variants (minor allele frequency <0.005). A total of 52 patients (48 dystonia [4.0%]; four PD [0.4%, all with GCH1 variants]) carried 33 different (likely) pathogenic variants, of which 17 were not previously reported. Pathogenic biallelic variants in PRKRA were not found. Episignature analysis of 48 KMT2B variants revealed that only two of these should be considered (likely) pathogenic. CONCLUSION: This study confirms pathogenic variants in GCH1, GNAL, KMT2B, SGCE, THAP1, and TOR1A as relevant causes in dystonia and expands the mutational spectrum. Of note, likely pathogenic variants only in GCH1 were also found among PD patients. For DYT-KMT2B, the recently described episignature served as a reliable readout to determine the functional effect of newly identified variants. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Distonía , Trastornos Distónicos , Enfermedad de Parkinson , Humanos , Distonía/genética , Trastornos Distónicos/genética , Mutación/genética , Frecuencia de los Genes , Enfermedad de Parkinson/genética , Chaperonas Moleculares/genética , Proteínas de Unión al ADN/genética , Proteínas Reguladoras de la Apoptosis/genética
2.
Mov Disord ; 36(12): 2795-2801, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34320236

RESUMEN

BACKGROUND: Several monogenic causes for isolated dystonia have been identified, but they collectively account for only a small proportion of cases. Two genome-wide association studies have reported a few potential dystonia risk loci; but conclusions have been limited by small sample sizes, partial coverage of genetic variants, or poor reproducibility. OBJECTIVE: To identify robust genetic variants and loci in a large multicenter cervical dystonia cohort using a genome-wide approach. METHODS: We performed a genome-wide association study using cervical dystonia samples from the Dystonia Coalition. Logistic and linear regressions, including age, sex, and population structure as covariates, were employed to assess variant- and gene-based genetic associations with disease status and age at onset. We also performed a replication study for an identified genome-wide significant signal. RESULTS: After quality control, 919 cervical dystonia patients compared with 1491 controls of European ancestry were included in the analyses. We identified one genome-wide significant variant (rs2219975, chromosome 3, upstream of COL8A1, P-value 3.04 × 10-8 ). The association was not replicated in a newly genotyped sample of 473 cervical dystonia cases and 481 controls. Gene-based analysis identified DENND1A to be significantly associated with cervical dystonia (P-value 1.23 × 10-6 ). One low-frequency variant was associated with lower age-at-onset (16.4 ± 2.9 years, P-value = 3.07 × 10-8 , minor allele frequency = 0.01), located within the GABBR2 gene on chromosome 9 (rs147331823). CONCLUSION: The genetic underpinnings of cervical dystonia are complex and likely consist of multiple distinct variants of small effect sizes. Larger sample sizes may be needed to provide sufficient statistical power to address the presumably multi-genic etiology of cervical dystonia. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Estudio de Asociación del Genoma Completo , Tortícolis , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/genética , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Polimorfismo de Nucleótido Simple/genética , Reproducibilidad de los Resultados , Tortícolis/genética
3.
BMC Neurol ; 20(1): 276, 2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-32652957

RESUMEN

BACKGROUND: There is growing evidence for proprioceptive dysfunction in patients with Parkinson's disease (PD). The Lee Silvermann Voice Treatment-BIG therapy (LSVT-BIG), a special training program aiming at an increase of movement amplitudes in persons with PD (PwPD), has shown to be effective on motor symptoms. LSVT-BIG is conceptionally based on improving bradykinesia, in particular the decrement of repetitive movements, by proprioceptive recalibration. OBJECTIVE: To assess proprioceptive impairment in PwPD as compared to matched controls and to probe potential recalibration effects of the LSVT-BIG therapy on proprioception. METHODS: Proprioceptive performance and fine motor skills were assessed in 30 PwPD and 15 matched controls. Measurements with significant impairment in PwPD were chosen as outcome parameters for a standardized 4 weeks amplitude-based training intervention (LSVT-BIG) in 11 PwPD. Proprioceptive performance served as primary outcome measure. Secondary outcome measures included the motor part of the MDS-UPDRS, the nine-hole-peg test, and a questionnaire on quality of life. Post-interventional assessments were conducted at weeks 4 and 8. RESULTS: Compared to the control group, PwPD showed significantly larger pointing errors. After 4 weeks of LSVT-BIG therapy and even more so after an additional 4 weeks of continued training, proprioceptive performance improved significantly. In addition, quality of life improved as indicated by a questionnaire. CONCLUSION: LSVT-BIG training may achieve a recalibration of proprioceptive processing in PwPD. Our data indicates a probable physiological mechanism of a symptom-specific, amplitude-based behavioral intervention in PwPD.


Asunto(s)
Terapia por Ejercicio , Enfermedad de Parkinson/terapia , Propiocepción/fisiología , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Calidad de Vida
4.
Eur J Neurosci ; 47(3): 251-257, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29285814

RESUMEN

In relapsing-remitting MS (RRMS), the symptoms of a clinical relapse subside over time. Neuroplasticity is believed to play an important compensatory role. In this study, we assessed excitability-decreasing plasticity during an acute relapse of MS and 12 weeks afterwards. Motor plasticity was examined in 19 patients with clinically isolated syndrome or RRMS during a steroid-treated relapse (t1) and 12 weeks afterwards (t2) using paired-associative stimulation (PAS10). This method combines repetitive electric nerve stimulation with transcranial magnetic stimulation of the contralateral motor cortex to model long-term synaptic depression in the human cortex. Additionally, 19 age-matched healthy controls were assessed. Motor-evoked potentials of the abductor pollicis brevis muscle were recorded before and after intervention. Clinical disability was assessed by the multiple sclerosis functional composite and the subscore of the nine-hole peg test taken as a measure of hand function. The effect of PAS10 was significantly different between controls and patients; at t1, but not at t2, baseline-normalized postinterventional amplitudes were significantly higher in patients (106 [IQR 98-137] % post10-15 and 111 [IQR 88-133] % post20-25) compared to controls (92 [IQR 85-111] % and 90 [IQR 75-102] %). Additional exploratory analysis indicated a potentially excitability-enhancing effect of PAS10 in patients as opposed to controls. Significant clinical improvement between t1 and t2 was not correlated with PAS10 effects. Our results indicate an alteration of PAS10-induced synaptic plasticity during relapse, presumably reflecting a polarity shift due to metaplastic processes within the motor cortex. Further studies will need to elucidate the functional significance of such changes for the clinical course of MS.


Asunto(s)
Potenciales Evocados Motores/fisiología , Esclerosis Múltiple/fisiopatología , Músculo Esquelético/fisiología , Plasticidad Neuronal/fisiología , Adolescente , Adulto , Estimulación Eléctrica/métodos , Femenino , Mano/fisiopatología , Humanos , Depresión Sináptica a Largo Plazo/fisiología , Persona de Mediana Edad , Corteza Motora/fisiología , Esclerosis Múltiple/terapia , Recurrencia , Adulto Joven
5.
Eur Arch Psychiatry Clin Neurosci ; 264(5): 459-63, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24253425

RESUMEN

Borderline personality (BPD) and complex posttraumatic stress disorders (PTSD) are both powerfully associated with the experience of interpersonal violence during childhood and adolescence. The disorders frequently co-occur and often result in pervasive problems in, e.g., emotion regulation and altered pain perception, where the endocannabinoid system is deeply involved. We hypothesize an endocannabinoid role in both disorders. We investigated serum levels of the endocannabinoids anandamide and 2-arachidonoylglycerol and related fatty acid ethanolamides (FAEs) in BPD, PTSD, and controls. Significant alterations were found for both endocannabinoids in BPD and for the FAE oleoylethanolamide in PTSD suggesting a respective link to both disorders.


Asunto(s)
Trastorno de Personalidad Limítrofe/sangre , Ácidos Grasos/sangre , Trastornos por Estrés Postraumático/sangre , Adulto , Amidas , Ácidos Araquidónicos/sangre , Endocannabinoides/sangre , Etanolaminas/sangre , Femenino , Glicéridos/sangre , Humanos , Masculino , Persona de Mediana Edad , Ácidos Palmíticos/sangre , Alcamidas Poliinsaturadas/sangre , Estudios Prospectivos , Escalas de Valoración Psiquiátrica , Índice de Severidad de la Enfermedad , Adulto Joven
6.
Aging (Albany NY) ; 16(6): 5772-5791, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499388

RESUMEN

The remarkable increase in human life expectancy over the past century has been achieved at the expense of the risk of age-related impairment and disease. Neurodegeneration, be it part of normal aging or due to neurodegenerative disorders, is characterized by loss of specific neuronal populations, leading to increasing clinical impairment. The individual course may be described as balance between aging- or disease-related pathology and intrinsic mechanisms of adaptation. There is plenty of evidence that the human brain is provided with exhaustible resources to maintain function in the face of adverse conditions. While a reserve concept has mainly been coined in cognitive neuroscience, emerging evidence suggests similar mechanisms to underlie individual differences of adaptive capacity within the motor system. In this narrative review, we summarize what has been proposed to date about a motor reserve (mR) framework. We present current evidence from research in aging subjects and people with neurological conditions, followed by a description of what is known about potential neuronal substrates of mR so far. As there is no gold standard of mR quantification, we outline current approaches which describe various indicators of mR. We conclude by sketching out potential future directions of research. Expediting our understanding of differences in individual motor resilience towards aging and disease will eventually contribute to new, individually tailored therapeutic strategies. Provided early diagnosis, enhancing the individual mR may be suited to postpone disease onset by years and may be an efficacious contribution towards healthy aging, with an increased quality of life for the elderly.


Asunto(s)
Calidad de Vida , Resiliencia Psicológica , Humanos , Envejecimiento/fisiología , Encéfalo
7.
Toxins (Basel) ; 15(10)2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37888637

RESUMEN

(1) Background: The first-line treatment for patients with focal or segmental dystonia with a craniocervical distribution is still the intramuscular injection of botulinum neurotoxin (BoNT). However, some patients experience primary or secondary treatment failure from this potential immunogenic therapy. Deep brain stimulation (DBS) may then be used as a backup strategy in this situation. (2) Methods: Here, we reviewed the current study literature to answer a specific question regarding the efficacy and safety of the use of DBS, particularly for cervical dystonia (CD) and Meige syndrome (MS) in patients with documented treatment failure under BoNT. (3) Results: There are only two studies with the highest level of evidence in this area. Despite this clear limitation, in the context of the narrowly defined research question of this paper, it is possible to report 161 patients with CD or MS who were included in studies that were able to show a statistically significant reduction in dystonic symptoms using DBS. Safety and tolerability data appeared adequate. However, much of the information is based on retrospective observations. (4) Conclusions: The evidence base in this area is in need of further scientific investigation. Most importantly, more randomized, controlled and double-blind trials are needed, possibly including a head-to-head comparison of DBS and BoNT.


Asunto(s)
Toxinas Botulínicas , Estimulación Encefálica Profunda , Trastornos Distónicos , Humanos , Toxinas Botulínicas/efectos adversos , Estimulación Encefálica Profunda/efectos adversos , Trastornos Distónicos/tratamiento farmacológico , Síndrome de Meige/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Retrospectivos , Tortícolis/tratamiento farmacológico , Resultado del Tratamiento
8.
Sci Rep ; 13(1): 6026, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055560

RESUMEN

Mental rotation (mR) bases on imagination of actual movements. It remains unclear whether there is a specific pattern of mR impairment in focal dystonia. We aimed to investigate mR in patients with cervical dystonia (CD) and blepharospasm (BS) and to assess potential confounders. 23 CD patients and 23 healthy controls (HC) as well as 21 BS and 19 hemifacial spasm (HS) patients were matched for sex, age, and education level. Handedness, finger dexterity, general reaction time, and cognitive status were assessed. Disease severity was evaluated by clinical scales. During mR, photographs of body parts (head, hand, or foot) and a non-corporal object (car) were displayed at different angles rotated within their plane. Subjects were asked to judge laterality of the presented image by keystroke. Both speed and correctness were evaluated. Compared to HC, CD and HS patients performed worse in mR of hands, whereas BS group showed comparable performance. There was a significant association of prolonged mR reaction time (RT) with reduced MoCA scores and with increased RT in an unspecific reaction speed task. After exclusion of cognitively impaired patients, increased RT in the mR of hands was confined to CD group, but not HS. While the question of whether specific patterns of mR impairment reliably define a dystonic endophenotype remains elusive, our findings point to mR as a useful tool, when used carefully with control measures and tasks, which may be capable of identifying specific deficits that distinguish between subtypes of dystonia.


Asunto(s)
Blefaroespasmo , Trastornos Distónicos , Espasmo Hemifacial , Tortícolis , Humanos , Dedos , Destreza Motora
9.
Brain Stimul ; 16(5): 1243-1251, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37619891

RESUMEN

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment for advanced Parkinson's disease (PD). Clinical outcomes after DBS can be limited by poor programming, which remains a clinically driven, lengthy and iterative process. Electrophysiological recordings in PD patients undergoing STN-DBS have shown an association between STN spectral power in the beta frequency band (beta power) and the severity of clinical symptoms. New commercially-available DBS devices now enable the recording of STN beta oscillations in chronically-implanted PD patients, thereby allowing investigation into the use of beta power as a biomarker for DBS programming. OBJECTIVE: To determine the potential advantages of beta-guided DBS programming over clinically and image-guided programming in terms of clinical efficacy and programming time. METHODS: We conducted a randomized, blinded, three-arm, crossover clinical trial in eight Parkinson's patients with STN-DBS who were evaluated three months after DBS surgery. We compared clinical efficacy and time required for each DBS programming paradigm, as well as DBS parameters and total energy delivered between the three strategies (beta-, clinically- and image-guided). RESULTS: All three programming methods showed similar clinical efficacy, but the time needed for programming was significantly shorter for beta- and image-guided programming compared to clinically-guided programming (p < 0.001). CONCLUSION: Beta-guided programming may be a useful and more efficient approach to DBS programming in Parkinson's patients with STN-DBS. It takes significantly less time to program than traditional clinically-based programming, while providing similar symptom control. In addition, it is readily available within the clinical DBS programmer, making it a valuable tool for improving current clinical practice.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Estimulación Encefálica Profunda/métodos , Estudios de Factibilidad , Proyectos Piloto , Núcleo Subtalámico/fisiología
10.
Parkinsonism Relat Disord ; 110: 105400, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37086575

RESUMEN

INTRODUCTION: Dystonia is a movement disorder of variable etiology and clinical presentation and is accompanied by tremor in about 50% of cases. Monogenic causes in dystonia are rare, but also in the group of non-monogenic dystonias 10-30% of patients report a family history of dystonia. This points to a number of patients currently classified as idiopathic that have at least in part an underlying genetic contribution. The present study aims to identify clinical and demographic features associated with heritability of yet idiopathic dystonia. METHODS: Seven hundred thirty-three datasets were obtained from the DysTract dystonia registry, patients with acquired dystonia or monogenic causes were excluded. Affected individuals were assigned to a familial and sporadic group, and clinical features were compared across these groups. Additionally, the history of movement disorders was also counted in family members. RESULTS: 18.2% of patients reported a family history of dystonia. Groups differed in age at onset, disease duration and presence of tremor on a descriptive level. Logistic regression analysis revealed that tremor was the only predictor for a positive family history of dystonia (OR 2.49, CI = 1.54-4.11, p < 0.001). Tremor turned out to be the most common movement disorder in available relatives of patients, and presence of tremor in relatives was associated with tremor in index patients (X2(1) = 16.2, p < 0.001). CONCLUSIONS: Tremor is associated with an increased risk of familial clustering of dystonia and with a family history of tremor itself. This indicates a hereditable dystonia-tremor syndrome with a clinical spectrum ranging from tremor-predominant diseases to dystonia.


Asunto(s)
Distonía , Trastornos Distónicos , Trastornos del Movimiento , Humanos , Distonía/etiología , Temblor/epidemiología , Temblor/genética , Temblor/complicaciones , Trastornos Distónicos/epidemiología , Trastornos Distónicos/genética , Trastornos Distónicos/complicaciones , Trastornos del Movimiento/complicaciones , Análisis por Conglomerados
11.
Handb Exp Pharmacol ; (212): 165-85, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23129332

RESUMEN

Schizophrenia and psychotic disorders represent psychiatric disease patterns characterized by remarkable impairment arising from alterations in cognition, perception, and mood. Although these severe illnesses have been known for more than 100 years, psychopharmacological treatment of their characteristically broad spectrum of symptoms as well as patients' quality of life, compliance, and time to relapse still remain a challenge in everyday clinical practice. In the following, we will provide a brief synopsis of first-generation antipsychotics (FGAs) followed by a detailed description of current second-generation antipsychotics (SGAs) along with their effects and side effects to evaluate unmet needs in the treatment of schizophrenia and psychotic disorders.Overall, drug profiles differ concerning their efficacy, associated side effects, cost, and mechanism of action. Thus, a shared decision-making process taking all these factors into account is necessary to develop an effective treatment based on currently approved compounds. To date, however, the spectrum of options is limited and only serves a limited proportion of patients. In addition, certain symptoms do not respond well to currently available strategies or respond only at the price of considerable side effects leading to reduced compliance and adherence in a substantial number of cases.Unmet needs in the field of antipsychotic treatment are found in a wide range of areas starting from efficacy, safety and tolerability, compliance and adherence, and continuing to stage-dependent and more personalized approaches.


Asunto(s)
Antipsicóticos/uso terapéutico , Trastornos Psicóticos/tratamiento farmacológico , Antipsicóticos/administración & dosificación , Antipsicóticos/efectos adversos , Humanos , Uso Fuera de lo Indicado
12.
Front Neurol ; 12: 785529, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34819915

RESUMEN

Objectives: Deep brain stimulation (DBS) programming is based on clinical response testing. Our clinical pilot trial assessed the feasibility of image-guided programing using software depicting the lead location in a patient-specific anatomical model. Methods: Parkinson's disease patients with subthalamic nucleus-DBS were randomly assigned to standard clinical-based programming (CBP) or anatomical-based (imaging-guided) programming (ABP) in an 8-week crossover trial. Programming characteristics and clinical outcomes were evaluated. Results: In 10 patients, both programs led to similar motor symptom control (MDS-UPDRS III) after 4 weeks (medicationOFF/stimulationON; CPB: 18.27 ± 9.23; ABP: 18.37 ± 6.66). Stimulation settings were not significantly different, apart from higher frequency in the baseline program than CBP (p = 0.01) or ABP (p = 0.003). Time spent in a program was not significantly different (CBP: 86.1 ± 29.82%, ABP: 88.6 ± 29.0%). Programing time was significantly shorter (p = 0.039) with ABP (19.78 ± 5.86 min) than CBP (45.22 ± 18.32). Conclusion: Image-guided DBS programming in PD patients drastically reduces programming time without compromising symptom control and patient satisfaction in this small feasibility trial.

13.
Front Neurosci ; 13: 1241, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803012

RESUMEN

BACKGROUND: Increasing attention is payed to the contribution of somatosensory processing in motor control. In particular, temporal somatosensory discrimination has been found to be altered differentially in common movement disorders. To date, there have only been speculations as to how impaired temporal discrimination and clinical motor signs may relate to each other. Prior to disentangling this relationship, potential confounders of temporal discrimination, in particular age and peripheral nerve conduction, should be assessed, and a quantifiable measure of proprioceptive performance should be established. OBJECTIVE: To assess the influence of age and polyneuropathy (PNP) on somatosensory temporal discrimination threshold (STDT), temporal discrimination movement threshold (TDMT), and behavioral measures of proprioception of upper and lower limbs. METHODS: STDT and TDMT were assessed in 79 subjects (54 healthy, 25 with PNP; age 30-79 years). STDT was tested with surface electrodes over the thenar or dorsal foot region. TDMT was probed with needle electrodes in flexor carpi radialis (FCR) and tibialis anterior (TA) muscle. Goniometer-based devices were used to assess limb proprioception during (i) active pointing to LED markers, (ii) active movements in response to variable visual cues, and (iii) estimation of limb position following passive movements. Pointing (or estimation) error was taken as a measure of proprioceptive performance. RESULTS: In healthy subjects, higher age was associated with higher STDT and TDMT at upper and lower extremities, while age did not correlate with proprioceptive performance. Patients with PNP showed higher STDT and TDMT values and decreased proprioceptive performance in active pointing tasks compared to matched healthy subjects. As an additional finding, there was a significant correlation between performance in active pointing tasks and temporal discrimination thresholds. CONCLUSION: Given their notable impact on measures of temporal discrimination, age and peripheral nerve conduction need to be accounted for if STDT and TDMT are applied in patients with movement disorders. As a side observation, the correlation between measures of proprioception and temporal discrimination may prompt further studies on the presumptive link between these two domains.

14.
Neuropsychologia ; 131: 353-359, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31078549

RESUMEN

In the rubber hand illusion (RHI), illusory bodily ownership is induced by synchronous touch of a participant's hidden hand and a visible surrogate. This paradigm allows investigating how the brain resolves conflicting multisensory evidence during perceptual inference. Previous studies suggest that the conflict between visual and proprioceptive information preceding the RHI is solved by attenuation of the somatosensory input. To investigate whether excitability-decreasing transcranial direct current stimulation (cathodal tDCS) over the primary somatosensory cortex may enhance the RHI, thirty healthy subjects underwent RHI without (baseline) and during tDCS. Each subject received cathodal, anodal, and sham stimulation at independent sessions on three separate days. The RHI paradigm was applied at six interval distances between the real and artificial hand. Occurrence of the RHI was evaluated by a questionnaire (illusion score) and the perceived hand misplacement (relative drift). Compared to sham, neither cathodal, nor anodal tDCS induced significant changes of the illusion score. However, cathodal tDCS was associated with significantly higher illusion scores compared to anodal stimulation. The relative drift was comparable between stimulation modes. Our findings point to a differential impact of cathodal vs. anodal tDCS over the somatosensory region on RHI perception. This may indicate that an attenuation - in contrast to an enhancement - of somatosensory precision might pave the way for the integration of an artificial limb into one's body schema.


Asunto(s)
Ilusiones/fisiología , Corteza Somatosensorial/fisiología , Percepción del Tacto/fisiología , Percepción Visual/fisiología , Adulto , Imagen Corporal , Femenino , Humanos , Masculino , Estimulación Transcraneal de Corriente Directa , Adulto Joven
15.
Neurol Res Pract ; 1: 2, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33324868

RESUMEN

BACKGROUND: Selective peripheral denervation via botulinum neurotoxin injections into dystonic muscles is the first-line treatment for cervical dystonia. Pallidal neurostimulation is a potent alternative, but currently restricted to patients failing on neurotoxin therapy. As botulinum neurotoxin is partially effective but often unsatisfactory in a relevant proportion of patients, earlier neurostimulation might be advantageous in providing stable symptom control and preventing disability. This trial intends to demonstrate, that pallidal neurostimulation is superior to neurotoxin injections in best clinical practice for controlling the symptoms of cervical dystonia and that it is safe in patients with a partial therapy response to peripheral denervation. We hypothesize a better outcome in everyday functioning and health-related quality of life of neurostimulated patients. METHODS: We aim to recruit 66 cervical dystonia patients into a double-blind comparison of pallidal neurostimulation versus botulinum neurotoxin type A. Eligible patients need ≥25% motor symptom reduction 4 weeks after a neurotoxin test injection, but are willing to undergo DBS surgery due to unsatisfactory symptom control. All participants will be implanted with a DBS system, and randomized into 2 groups: First group will receive effective neurostimulation and saline injections into dystonic muscles. Second group is treated with regular neurotoxin injections and undergoes a sham-stimulation. Primary outcome is the change in TWSTRS total score between baseline and 6 months of therapy. Secondary outcome parameters are corresponding changes in TWSTRS motor score, Tsui score, CDQ-24 and SF-36. Safety will be assessed by frequency and severity of reported adverse events. Statistical analysis includes intention-to-treat and per protocol populations, analysis based on imputation of missing values and analysis adjusting for differences in baseline TWSTRS. After 6 months of blinded treatment all patients will receive open-label neurostimulation and neurotoxin treatment as needed, and are followed up 48 weeks after randomization. PERSPECTIVE: We will assess if pallidal neurostimulation is a safe and effective alternative to selective peripheral denervation by botulinum toxin injections in cervical dystonia, which may be offered earlier in the course of disease based on patient preference. A positive study outcome would influence future treatment guidelines of cervical dystonia. TRIAL REGISTRATION: EudraCT registration number: 2016-001378-13.

16.
Front Neurol ; 10: 231, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30930842

RESUMEN

Background: Cervical dystonia is a movement disorder causing abnormal postures and movements of the head. While the exact pathophysiology of cervical dystonia has not yet been fully elucidated, a growing body of evidence points to the cerebellum as an important node. Methods: Here, we examined the impact of cerebellar interference by transcranial magnetic stimulation on finger-tapping related brain activation and neurophysiological measures of cortical excitability and inhibition in cervical dystonia and controls. Bilateral continuous theta-burst stimulation was used to modulate cerebellar cortical excitability in 16 patients and matched healthy controls. In a functional magnetic resonance imaging arm, data were acquired during simple finger tapping before and after cerebellar stimulation. In a neurophysiological arm, assessment comprised motor-evoked potentials amplitude and cortical silent period duration. Theta-burst stimulation over the dorsal premotor cortex and sham stimulation (neurophysiological arm only) served as control conditions. Results: At baseline, finger tapping was associated with increased activation in the ipsilateral cerebellum in patients compared to controls. Following cerebellar theta-burst stimulation, this pattern was even more pronounced, along with an additional movement-related activation in the contralateral somatosensory region and angular gyrus. Baseline motor-evoked potential amplitudes were higher and cortical silent period duration shorter in patients compared to controls. After cerebellar theta-burst stimulation, cortical silent period duration increased significantly in dystonia patients. Conclusion: We conclude that in cervical dystonia, finger movements-though clinically non-dystonic-are associated with increased activation of the lateral cerebellum, possibly pointing to general motor disorganization, which remains subclinical in most body regions. Enhancement of this activation together with an increase of silent period duration by cerebellar continuous theta-burst stimulation may indicate predominant disinhibitory effects on Purkinje cells, eventually resulting in an inhibition of cerebello-thalamocortical circuits.

17.
Biol Psychol ; 87(3): 407-13, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21645585

RESUMEN

The agency facet of extraversion has been hypothesized to be based on individual differences in dopamine activity. Recent work suggests that resting posterior minus frontal electroencephalographic (EEG) slow oscillations (delta, theta) is both consistently associated with extraversion and sensitive to dopamine D2 receptor antagonist-induced changes in dopaminergic activity. Here we examine for the first time the interrelations between polymorphisms of the dopamine D2 receptor (DRD2) gene (rs1800497 [previously termed TAQ1A], rs1076560, rs1799732 [-141C Ins/Del]), extraversion and resting posterior minus frontal (Pz-Fz) slow oscillations. As predicted, we found an association between DRD2 and resting Pz-Fz slow oscillations in a sample of 141 individuals participating in an eyes-closed resting EEG session. Moreover, we replicated the association between extraversion and Pz-Fz slow oscillations. Our findings strongly suggest that the posterior-frontal distribution of slow oscillations constitutes a useful brain-based intermediate phenotype for investigating the dopaminergic basis of extraversion.


Asunto(s)
Ondas Encefálicas/genética , Extraversión Psicológica , Lóbulo Frontal/fisiología , Receptores de Dopamina D2/genética , Adulto , Electroencefalografía , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Personalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA