Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
EMBO Rep ; 19(11)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30237157

RESUMEN

The 1555 A to G substitution in mitochondrial 12S A-site rRNA is associated with maternally transmitted deafness of variable penetrance in the absence of otherwise overt disease. Here, we recapitulate the suggested A1555G-mediated pathomechanism in an experimental model of mitoribosomal mistranslation by directed mutagenesis of mitoribosomal protein MRPS5. We first establish that the ratio of cysteine/methionine incorporation and read-through of mtDNA-encoded MT-CO1 protein constitute reliable measures of mitoribosomal misreading. Next, we demonstrate that human HEK293 cells expressing mutant V336Y MRPS5 show increased mitoribosomal mistranslation. As for immortalized lymphocytes of individuals with the pathogenic A1555G mutation, we find little changes in the transcriptome of mutant V336Y MRPS5 HEK cells, except for a coordinated upregulation of transcripts for cytoplasmic ribosomal proteins. Homozygous knock-in mutant Mrps5 V338Y mice show impaired mitochondrial function and a phenotype composed of enhanced susceptibility to noise-induced hearing damage and anxiety-related behavioral alterations. The experimental data in V338Y mutant mice point to a key role of mitochondrial translation and function in stress-related behavioral and physiological adaptations.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Ribosómicas/genética , Envejecimiento/genética , Animales , Conducta Animal , Encéfalo/citología , Cisteína/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de Escherichia coli/genética , Células HEK293 , Trastornos de la Audición/genética , Humanos , Metionina/metabolismo , Ratones Transgénicos , Mitocondrias/genética , Ruido/efectos adversos , Biosíntesis de Proteínas , ARN Mensajero , Ribosomas/genética , Ribosomas/metabolismo , Estrés Fisiológico/genética
2.
Biochim Biophys Acta ; 1857(8): 1267-1276, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26997499

RESUMEN

During apoptosis mitochondria undergo cristae remodeling and fragmentation, but how the latter relates to outer membrane permeabilization and downstream caspase activation is unclear. Here we show that the mitochondrial fission protein Dynamin Related Protein (Drp) 1 participates in cytochrome c release by selected intrinsic death stimuli. While Bax, Bak double deficient (DKO) and Apaf1(-/-) mouse embryonic fibroblasts (MEFs) were less susceptible to apoptosis by Bcl-2 family member BID, H(2)O(2), staurosporine and thapsigargin, Drp1(-/-) MEFs were protected only from BID and H(2)O(2). Resistance to cell death of Drp1(-/-) and DKO MEFs correlated with blunted cytochrome c release, whereas mitochondrial fragmentation occurred in all cell lines in response to all tested stimuli, indicating that other mechanisms accounted for the reduced cytochrome c release. Indeed, cristae remodeling was reduced in Drp1(-/-) cells, potentially explaining their resistance to apoptosis. Our results indicate that caspase-independent mitochondrial fission and Drp1-dependent cristae remodeling amplify apoptosis. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Asunto(s)
Apoptosis/genética , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Dinaminas/genética , Fibroblastos/metabolismo , Dinámicas Mitocondriales/genética , Animales , Apoptosis/efectos de los fármacos , Factor Apoptótico 1 Activador de Proteasas/deficiencia , Factor Apoptótico 1 Activador de Proteasas/genética , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Línea Celular , Citocromos c/metabolismo , Dinaminas/deficiencia , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica , Peróxido de Hidrógeno/farmacología , Ratones , Ratones Noqueados , Dinámicas Mitocondriales/efectos de los fármacos , Estrés Oxidativo , Transducción de Señal , Estaurosporina/farmacología , Tapsigargina/farmacología , Proteína Destructora del Antagonista Homólogo bcl-2/deficiencia , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/deficiencia , Proteína X Asociada a bcl-2/genética
3.
J Cell Sci ; 124(Pt 20): 3450-63, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21984814

RESUMEN

The apoptotic protease activating factor 1 (Apaf1) is the main component of the apoptosome, and a crucial factor in the mitochondria-dependent death pathway. Here we show that Apaf1 plays a role in regulating centrosome maturation. By analyzing Apaf1-depleted cells, we have found that Apaf1 loss induces centrosome defects that impair centrosomal microtubule nucleation and cytoskeleton organization. This, in turn, affects several cellular processes such as mitotic spindle formation, cell migration and mitochondrial network regulation. As a consequence, Apaf1-depleted cells are more fragile and have a lower threshold to stress than wild-type cells. In fact, we found that they exhibit low Bcl-2 and Bcl-X(L) expression and, under apoptotic treatment, rapidly release cytochrome c. We also show that Apaf1 acts by regulating the recruitment of HCA66, with which it interacts, to the centrosome. This function of Apaf1 is carried out during the cell life and is not related to its apoptotic role. Therefore, Apaf1 might also be considered a pro-survival molecule, whose absence impairs cell performance and causes a higher responsiveness to stressful conditions.


Asunto(s)
Factor Apoptótico 1 Activador de Proteasas/metabolismo , Proteínas Portadoras/metabolismo , Centrosoma/metabolismo , Mitocondrias/metabolismo , Huso Acromático/metabolismo , Animales , Antígenos de Neoplasias/metabolismo , Factor Apoptótico 1 Activador de Proteasas/genética , Muerte Celular/genética , Movimiento Celular/genética , Supervivencia Celular/genética , Células Cultivadas , Centrosoma/ultraestructura , Citoesqueleto/metabolismo , Ratones , Ratones Noqueados , Unión Proteica , Transporte de Proteínas/genética
4.
Acta Neuropathol ; 123(2): 189-203, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22179580

RESUMEN

Research efforts during the last decade have deciphered the basic molecular mechanisms governing mitochondrial fusion and fission. We now know that in mammalian cells mitochondrial fission is mediated by the large GTPase dynamin-related protein 1 (Drp1) acting in concert with outer mitochondrial membrane (OMM) proteins such as Fis1, Mff, and Mief1. It is also generally accepted that organelle fusion depends on the action of three large GTPases: mitofusins (Mfn1, Mfn2) mediating membrane fusion on the OMM level, and Opa1 which is essential for inner mitochondrial membrane fusion. Significantly, mutations in Drp1, Mfn2, and Opa1 have causally been linked to neurodegenerative conditions. Despite this knowledge, crucial questions such as to how fission of the inner and outer mitochondrial membranes are coordinated and how these processes are integrated into basic physiological processes such as apoptosis and autophagy remain to be answered in detail. In this review, we will focus on what is currently known about the mechanism of mitochondrial fission and explore the pathophysiological consequences of dysregulated organelle fission with a special focus on neurodegenerative conditions, including Alzheimer's, Huntington's and Parkinson's disease, as well as ischemic brain damage.


Asunto(s)
Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Muerte Celular/genética , Humanos , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/patología , Proteínas Mitocondriales/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Transducción de Señal/genética
5.
Antimicrob Agents Chemother ; 55(9): 4096-102, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21730122

RESUMEN

Antibiotics targeting the bacterial ribosome typically bind to highly conserved rRNA regions with only minor phylogenetic sequence variations. It is unclear whether these sequence variations affect antibiotic susceptibility or resistance development. To address this question, we have investigated the drug binding pockets of aminoglycosides and macrolides/ketolides. The binding site of aminoglycosides is located within helix 44 of the 16S rRNA (A site); macrolides/ketolides bind to domain V of the 23S rRNA (peptidyltransferase center). We have used mutagenesis of rRNA sequences in Mycobacterium smegmatis ribosomes to reconstruct the different bacterial drug binding sites and to study the effects of rRNA sequence variations on drug activity. Our results provide a rationale for differences in species-specific drug susceptibility patterns and species-specific resistance phenotypes associated with mutational alterations in the drug binding pocket.


Asunto(s)
Filogenia , ARN Ribosómico/genética , Aminoglicósidos/química , Aminoglicósidos/farmacología , Sitios de Unión , Eritromicina/química , Eritromicina/farmacología , Cetólidos/química , Cetólidos/farmacología , Macrólidos/química , Macrólidos/farmacología , Pruebas de Sensibilidad Microbiana , Mycobacterium smegmatis/genética , ARN Ribosómico/clasificación , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética
6.
Cells ; 10(11)2021 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-34831079

RESUMEN

Translational errors frequently arise during protein synthesis, producing misfolded and dysfunctional proteins. Chronic stress resulting from translation errors may be particularly relevant in tissues that must synthesize and secrete large amounts of secretory proteins. Here, we studied the proteostasis networks in the liver of mice that express the Rps2-A226Y ribosomal ambiguity (ram) mutation to increase the translation error rate across all proteins. We found that Rps2-A226Y mice lack activation of the eIF2 kinase/ATF4 pathway, the main component of the integrated stress response (ISR), as well as the IRE1 and ATF6 pathways of the ER unfolded protein response (ER-UPR). Instead, we found downregulation of chronic ER stress responses, as indicated by reduced gene expression for lipogenic pathways and acute phase proteins, possibly via upregulation of Sirtuin-1. In parallel, we observed activation of alternative proteostasis responses, including the proteasome and the formation of stress granules. Together, our results point to a concerted response to error-prone translation to alleviate ER stress in favor of activating alternative proteostasis mechanisms, most likely to avoid cell damage and apoptotic pathways, which would result from persistent activation of the ER and integrated stress responses.


Asunto(s)
Estrés del Retículo Endoplásmico , Silenciador del Gen , Hígado/metabolismo , Hígado/patología , Biosíntesis de Proteínas , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Estrés del Retículo Endoplásmico/genética , Ratones Transgénicos , Mitocondrias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Biosíntesis de Proteínas/genética , Proteostasis , Sirtuina 1/metabolismo , Gránulos de Estrés/metabolismo , Respuesta de Proteína Desplegada/genética , Regulación hacia Arriba/genética
8.
Cell Rep ; 24(6): 1407-1414, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30089252

RESUMEN

Stress adaptation is essential for neuronal health. While the fundamental role of mitochondria in neuronal development has been demonstrated, it is still not clear how adult neurons respond to alterations in mitochondrial function and how neurons sense, signal, and respond to dysfunction of mitochondria and their interacting organelles. Here, we show that neuron-specific, inducible in vivo ablation of the mitochondrial fission protein Drp1 causes ER stress, resulting in activation of the integrated stress response to culminate in neuronal expression of the cytokine Fgf21. Neuron-derived Fgf21 induction occurs also in murine models of tauopathy and prion disease, highlighting the potential of this cytokine as an early biomarker for latent neurodegenerative conditions.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Animales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA