Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 22(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435397

RESUMEN

Selenoproteins are a class of proteins with the selenium-containing amino acid selenocysteine (Sec) in their primary structure. Sec is incorporated into selenoproteins via recoding of the stop codon UGA, with specific cis and trans factors required during translation to avoid UGA recognition as a stop codon, including a Sec-specific tRNA, tRNA[Ser]Sec, encoded in mice by the gene Trsp. Whole-body deletion of Trsp in mouse is embryonically lethal, while targeted deletion of Trsp in mice has been used to understand the role of selenoproteins in the health and physiology of various tissues. We developed a mouse model with the targeted deletion of Trsp in brown adipocytes (Trspf/f-Ucp1-Cre+/-), a cell type predominant in brown adipose tissue (BAT) controlling energy expenditure via activation of adaptive thermogenesis, mostly using uncoupling protein 1 (Ucp1). At room temperature, Trspf/f-Ucp1-Cre+/- mice maintain oxygen consumption and Ucp1 expression, with male Trspf/f-Ucp1-Cre+/- mice accumulating more triglycerides in BAT than both female Trspf/f-Ucp1-Cre+/- mice or Trspf/f controls. Acute cold exposure neither reduced core body temperature nor changed the expression of selenoprotein iodothyronine deiodinase type II (Dio2), a marker of adaptive thermogenesis, in Trspf/f-Ucp1-Cre+/- mice. Microarray analysis of BAT from Trspf/f-Ucp1-Cre+/- mice revealed glutathione S-transferase alpha 3 (Gsta3) and ELMO domain containing 2 (Elmod2) as the transcripts most affected by the loss of Trsp. Male Trspf/f-Ucp1-Cre+/- mice showed mild hypothyroidism while downregulating thyroid hormone-responsive genes Thrsp and Tshr in their BATs. In summary, modest changes in the BAT of Trspf/f-Ucp1-Cre +/- mice implicate a mild thyroid hormone dysfunction in brown adipocytes.


Asunto(s)
Adipocitos Marrones/metabolismo , Selenoproteínas/metabolismo , Termogénesis , Tejido Adiposo Pardo/metabolismo , Animales , Vías Biosintéticas , Células Cultivadas , Respuesta al Choque por Frío , Metabolismo Energético , Femenino , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , ARN de Transferencia Aminoácido-Específico/genética , Proteína Desacopladora 1/genética
2.
Redox Biol ; 24: 101228, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31153038

RESUMEN

Thyroid hormone (TH) is a key metabolic regulator that acts by coordinating short- and long-term energy needs. Accordingly, significant metabolic changes are observed depending on thyroid status. Although it is established that hyperthyroidism augments basal energy consumption, thus resulting in an enhanced metabolic state, the net effects on cellular respiration and generation of reactive oxygen species (ROS) remain unclear. To elucidate the effects of augmented TH signal in muscle cells, we generated a doxycycline-inducible cell line in which the expression of the TH-activating enzyme, type 2 deiodinase (D2), is reversibly turned on by the "Tet-ON" system. Interestingly, increased intracellular TH caused a net shift from oxidative phosphorylation to glycolysis and a consequent increase in the extracellular acidification rate. As a result, mitochondrial ROS production, and both the basal and doxorubicin-induced production of cellular ROS were reduced. Importantly, the expression of a set of antioxidant genes was up-regulated, and, among them, the mitochondrial scavenger Sod2 was specifically induced at transcriptional level by D2-mediated TH activation. Finally, we observed that attenuation of oxidative stress and increased levels of SOD2 are key elements of the differentiating cascade triggered by TH and D2, thereby establishing that D2 is essential in coordinating metabolic reprogramming of myocytes during myogenic differentiation. In conclusion, our findings indicate that TH plays a key role in oxidative stress dynamics by regulating ROS generation. Our novel finding that TH and its intracellular metabolism act as mitochondrial detoxifying agents sheds new light on metabolic processes relevant to muscle physiology.


Asunto(s)
Yoduro Peroxidasa/metabolismo , Mitocondrias/metabolismo , Desarrollo de Músculos , Oxidación-Reducción , Estrés Oxidativo , Hormonas Tiroideas/metabolismo , Animales , Antioxidantes/metabolismo , Glucólisis , Masculino , Ratones , Desarrollo de Músculos/genética , Fosforilación Oxidativa , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
3.
Endocrinology ; 160(5): 1205-1222, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30951174

RESUMEN

The type 2 iodothyronine-deiodinase (D2) enzyme converts T4 to T3, and mice deficient in this enzyme [D2 knockout (D2KO) mice] have decreased T3 derived from T4 in skeletal muscle despite normal circulating T3 levels. Because slow skeletal muscle is particularly susceptible to changes in T3 levels, we expected D2 inactivation to result in more pronounced slow-muscle characteristics in the soleus muscle, mirroring hypothyroidism. However, ex vivo studies of D2KO soleus revealed higher rates of twitch contraction and relaxation and reduced resistance to fatigue. Immunostaining of D2KO soleus showed that these properties were associated with changes in muscle fiber type composition, including a marked increase in the number of fast, glycolytic type IIB fibers. D2KO soleus muscle fibers had a larger cross-sectional area, and this correlated with increased myonuclear accretion in myotubes formed from D2KO skeletal muscle precursor cells differentiated in vitro. Consistent with our functional findings, D2KO soleus gene expression was markedly different from that in hypothyroid wild-type (WT) mice. Comparison of gene expression between euthyroid WT and D2KO mice indicated that PGC-1α, a T3-dependent regulator of slow muscle fiber type, was decreased by ∼50% in D2KO soleus. Disruption of Dio2 in the C2C12 myoblast cell line led to a significant decrease in PGC-1α expression and a faster muscle phenotype upon differentiation. These results indicate that D2 loss leads to significant changes in soleus contractile function and fiber type composition that are inconsistent with local hypothyroidism and suggest that reduced levels of PCG-1α may contribute to the observed phenotypical changes.


Asunto(s)
Yoduro Peroxidasa/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Mioblastos/metabolismo , Animales , Línea Celular , Expresión Génica , Yoduro Peroxidasa/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular/genética , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Mioblastos/citología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Tiroxina/metabolismo , Triyodotironina/metabolismo , Yodotironina Deyodinasa Tipo II
4.
Free Radic Biol Med ; 127: 198-205, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29572096

RESUMEN

Sexual dimorphism, the condition in which males and females in a species differ beyond the morphology of sex organs, delineates critical aspects of the biology of higher eukaryotes, including selenium metabolism. While sex differences in selenium biology have been described by several laboratories, delineation of the effects of sex in selenium function and regulation of selenoprotein expression is still in its infancy. This review encompasses the available information on sex-dependent parameters of selenium metabolism, as well as the effects of selenium on sex hormones. Gaps in the current knowledge of selenium and sex are identified and discussed.


Asunto(s)
Selenio/metabolismo , Selenoproteínas/metabolismo , Caracteres Sexuales , Animales , Femenino , Humanos , Masculino
5.
Nutrients ; 10(2)2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29385050

RESUMEN

Selenium (Se) is an essential micronutrient known for its antioxidant properties and health benefits, attributed to its presence in selenoproteins as the amino acid, selenocysteine. Selenocysteine lyase (Scly) catalyzes hydrolysis of selenocysteine to selenide and alanine, facilitating re-utilization of Se for de novo selenoprotein synthesis. Previously, it was reported that male Scly-/- mice develop increased body weight and body fat composition, and altered lipid and carbohydrate metabolism, compared to wild type mice. Strikingly, females appeared to present with a less severe phenotype, suggesting the relationship between Scly and energy metabolism may be regulated in a sex-specific manner. Here, we report that while body weight and body fat gain occur in both male and female Scly-/- mice, strikingly, males are susceptible to developing glucose intolerance, whereas female Scly-/- mice are protected. Because Se is critical for male reproduction, we hypothesized that castration would attenuate the metabolic dysfunction observed in male Scly-/- mice by eliminating sequestration of Se in testes. We report that fasting serum insulin levels were significantly reduced in castrated males compared to controls, but islet area was unchanged between groups. Finally, both male and female Scly-/- mice exhibit reduced hypothalamic expression of selenoproteins S, M, and glutathione peroxidase 1.


Asunto(s)
Metabolismo Energético , Liasas/deficiencia , Caracteres Sexuales , Adiposidad , Factores de Edad , Animales , Glucemia/metabolismo , Metabolismo Energético/genética , Femenino , Genotipo , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/enzimología , Intolerancia a la Glucosa/genética , Glutatión Peroxidasa/metabolismo , Hipotálamo/enzimología , Insulina/sangre , Liasas/genética , Masculino , Ratones Noqueados , Orquiectomía , Fenotipo , Selenoproteínas/metabolismo , Factores de Tiempo , Aumento de Peso , Glutatión Peroxidasa GPX1
6.
Nutrients ; 8(2): 80, 2016 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-26861388

RESUMEN

Selenium (Se) is a micronutrient that maintains biological functions through the action of Se containing proteins known as selenoproteins. Due to the known antioxidant effects of Se, supplements containing Se have been on the rise. While Se supplementation may be beneficial for Se deficient populations, few are at risk for Se deficiency due to the transportation of food from Se-rich regions and the rise of Se-enriched foods. Alarmingly, Se supplementation may have adverse effects in people who already receive an adequate Se supply. Specifically, an increased risk of type 2 diabetes has been reported in individuals with high baseline Se levels. However, this effect was restricted to males, suggesting the relationship between Se and glucose homeostasis may be sexually dimorphic. This review will discuss the current understanding of the interaction between Se and glucose homeostasis, including any sex differences that have been described.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 2/etiología , Dieta , Suplementos Dietéticos/efectos adversos , Alimentos Fortificados , Estado Nutricional , Selenio/efectos adversos , Diabetes Mellitus Tipo 2/sangre , Femenino , Humanos , Masculino , Enfermedades Metabólicas , Selenio/administración & dosificación , Selenio/sangre , Oligoelementos/administración & dosificación , Oligoelementos/efectos adversos , Oligoelementos/sangre
7.
Antioxid Redox Signal ; 23(10): 761-74, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26192035

RESUMEN

AIMS: Selenocysteine lyase (Scly) mediates selenocysteine decomposition. It was previously demonstrated that, upon adequate caloric intake (12% kcal fat) and selenium deficiency, disruption of Scly in mice leads to development of metabolic syndrome. In this study, we investigate the effect of a high-fat (45% kcal) selenium-adequate diet in Scly knockout (KO) mice on development of metabolic syndrome. Involvement of selenoproteins in energy metabolism after Scly disruption was also examined in vitro in the murine hepatoma cell line, Hepa1-6, following palmitate treatment. RESULTS: Scly KO mice were more susceptible to diet-induced obesity than their wild-type counterparts after feeding a high-fat selenium-adequate diet. Scly KO mice had aggravated hyperinsulinemia, hypercholesterolemia, glucose, and insulin intolerance, but unchanged inflammatory cytokines and expression of most selenoproteins, except increased serum selenoprotein P (Sepp1). Scly KO mice also exhibited enhanced hepatic levels of pyruvate and enzymes involved in the regulation of pyruvate cycling, such as pyruvate carboxylase (Pcx) and pyruvate dehydrogenase (Pdh). However, in vitro silencing of Scly in Hepa1-6 cells led to diminished Sepp1 expression, and concomitant palmitate treatment decreased Pdh expression. INNOVATION: The role of selenium in lipid metabolism is recognized, but specific selenium-dependent mechanisms leading to obesity are unclear. This study uncovers that Scly has a remarkable effect on obesity and metabolic syndrome development triggered by high-fat exposure, independent of the expression of most selenoproteins. CONCLUSION: Diet-induced obesity in Scly KO mice is aggravated, with effects on pyruvate levels and consequent activation of energy metabolism independent of selenoprotein levels.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Liasas/genética , Liasas/metabolismo , Obesidad/metabolismo , Animales , Línea Celular Tumoral , Metabolismo Energético , Proteínas de Choque Térmico/metabolismo , Síndrome Metabólico/enzimología , Síndrome Metabólico/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ácido Palmítico/farmacología , Selenio/metabolismo , Selenoproteínas/metabolismo
8.
Biol Trace Elem Res ; 161(3): 231-45, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24974905

RESUMEN

Selenoproteins are a distinct class of proteins that are characterized by the co-translational incorporation of selenium (Se) in the form of the 21st amino acid selenocysteine. Selenoproteins provide a key defense against oxidative stress, as many of these proteins participate in oxidation-reduction reactions neutralizing reactive oxygen species, where selenocysteine residues act as catalytic sites. Many selenoproteins are highly expressed in the brain, and mouse knockout studies have determined that several are required for normal brain development. In parallel with these laboratory studies, recent reports of rare human cases with mutations in genes involved in selenoprotein biosynthesis have described individuals with an assortment of neurological problems that mirror those detailed in knockout mice. These deficits include impairments in cognition and motor function, seizures, hearing loss, and altered thyroid metabolism. Additionally, due to the fact that oxidative stress is a key feature of neurodegenerative disease, there is considerable interest in the therapeutic potential of selenium supplementation for human neurological disorders. Studies performed in cell culture and rodent models have demonstrated that selenium administration attenuates oxidative stress, prevents neurodegeneration, and counters cell signaling mechanisms known to be dysregulated in certain disease states. However, there is currently no definitive evidence in support of selenium supplementation to prevent and/or treat common neurological conditions in the general population. It appears likely that, in humans, supplementation with selenium may only benefit certain subpopulations, such as those that are either selenium-deficient or possess genetic variants that affect selenium metabolism.


Asunto(s)
Encéfalo/metabolismo , Selenoproteínas/metabolismo , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Humanos , Ratones Noqueados , Mutación , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Organogénesis/genética , Estrés Oxidativo , Selenoproteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA