Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Vet Res ; 55(1): 73, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849962

RESUMEN

African swine fever virus (ASFV) causes a devastating disease affecting domestic and wild pigs. ASF was first introduced in Sardinia in 1978 and until 2019 only genotype I isolates were identified. A remarkable genetic stability of Sardinian ASFV isolates was described, nevertheless in 2019 two wild boar isolates with a sustained genomic deletion (4342 base pairs) were identified (7303WB/19, 7212WB/19). In this study, we therefore performed in vitro experiments with monocyte-derived macrophages (moMФ) to unravel the phenotypic characteristics of these deleted viruses. Both 7303WB/19 and 7212WB/19 presented a lower growth kinetic in moMФ compared to virulent Sardinian 26544/OG10, using either a high (1) or a low (0.01) multiplicity of infection (MOI). In addition, flow cytometric analysis showed that both 7303WB/19 and 7212WB/19 presented lower intracellular levels of both early and late ASFV proteins. We subsequently investigated whether deleted virus variants were previously circulating in wild boars in Sardinia. In the four years preceding the last genotype I isolation (February 2015-January 2019), other eight wild boar isolates were collected, all belonging to p72 genotype I, B602L subgroup X, but none of them presented a sustained genomic deletion. Overall, we observed the deleted virus isolates in Sardinia only in 2019, at the end of a strong eradication campaign, and our data suggest that it might possess an attenuated phenotype in vivo. A better understanding of ASFV evolution in endemic territories might contribute to development of effective control measures against ASF.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Genotipo , Sus scrofa , Animales , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/fisiología , Porcinos , Italia , Fiebre Porcina Africana/virología , Genoma Viral , Fenotipo , Eliminación de Secuencia , Macrófagos/virología
2.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36902099

RESUMEN

Swine are attracting increasing attention as a biomedical model, due to many immunological similarities with humans. However, porcine macrophage polarization has not been extensively analyzed. Therefore, we investigated porcine monocyte-derived macrophages (moMΦ) triggered by either IFN-γ + LPS (classical activation) or by diverse "M2-related" polarizing factors: IL-4, IL-10, TGF-ß, and dexamethasone. IFN-γ and LPS polarized moMΦ toward a proinflammatory phenotype, although a significant IL-1Ra response was observed. Exposure to IL-4, IL-10, TGF-ß, and dexamethasone gave rise to four distinct phenotypes, all antithetic to IFN-γ and LPS. Some peculiarities were observed: IL-4 and IL-10 both enhanced expression of IL-18, and none of the "M2-related" stimuli induced IL-10 expression. Exposures to TGF-ß and dexamethasone were characterized by enhanced levels of TGF-ß2, whereas stimulation with dexamethasone, but not TGF-ß2, triggered CD163 upregulation and induction of CCL23. Macrophages stimulated with IL-10, TGF-ß, or dexamethasone presented decreased abilities to release proinflammatory cytokines in response to TLR2 or TLR3 ligands: IL-10 showed a powerful inhibitory activity for CXCL8 and TNF release, whereas TGF-ß provided a strong inhibitory signal for IL-6 production. While our results emphasized porcine macrophage plasticity broadly comparable to human and murine macrophages, they also highlighted some peculiarities in this species.


Asunto(s)
Macrófagos , Porcinos , Animales , Células Cultivadas , Dexametasona/farmacología , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Fenotipo , Porcinos/inmunología , Factor de Crecimiento Transformador beta/metabolismo
3.
J Virol ; 92(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30021901

RESUMEN

Arboviruses can cause a variety of clinical signs, including febrile illness, arthritis, encephalitis, and hemorrhagic fever. The recent Zika epidemic highlighted the possibility that arboviruses may also negatively affect the male reproductive tract. In this study, we focused on bluetongue virus (BTV), the causative agent of bluetongue and one of the major arboviruses of ruminants. We show that rams that recovered from bluetongue displayed signs of testicular degeneration and azoospermia up to 100 days after the initial infection. Importantly, testicular degeneration was induced in rams experimentally infected with either a high (BTV-1IT2006)- or a low (BTV-1IT2013)-virulence strain of BTV. Rams infected with the low-virulence BTV strain displayed testicular lesions in the absence of other major clinical signs. Testicular lesions in BTV-infected rams were due to viral replication in the endothelial cells of the peritubular areas of the testes, resulting in stimulation of a type I interferon response, reduction of testosterone biosynthesis by Leydig cells and destruction of Sertoli cells and the blood-testis barrier in more severe cases. Hence, BTV induces testicular degeneration and disruption of spermatogenesis by replicating solely in the endothelial cells of the peritubular areas unlike other gonadotropic viruses. This study shows that a naturally occurring arboviral disease can cause testicular degeneration and affect male fertility at least temporarily.IMPORTANCE During the recent Zika epidemic, it has become apparent that arboviruses could potentially cause reproductive health problems in male patients. Little is known regarding the effects that arboviruses have on the male reproductive tract. Here, we studied bluetongue virus (BTV), an arbovirus of ruminants, and its effects on the testes of rams. We show that BTV was able to induce testicular degeneration in naturally and experimentally infected rams. Testicular degeneration was caused by BTV replication in the endothelial cells of the peritubular area surrounding the seminiferous tubules (the functional unit of the testes) and was associated with a localized type I interferon response, destruction of the cells supporting the developing germinal cells (Sertoli cells), and reduction of testosterone synthesis. As a result of BTV infection, rams became azoospermic. This study highlights that problems in the male reproductive tract caused by arboviruses could be more common than previously thought.


Asunto(s)
Virus de la Lengua Azul/patogenicidad , Lengua Azul/complicaciones , Endotelio Vascular/patología , Infertilidad Masculina/etiología , Enfermedades de las Ovejas/etiología , Espermatogénesis , Testículo/patología , Animales , Lengua Azul/patología , Lengua Azul/virología , Endotelio Vascular/metabolismo , Endotelio Vascular/virología , Infertilidad Masculina/patología , Masculino , Ovinos , Enfermedades de las Ovejas/patología , Testículo/metabolismo , Testículo/virología , Testosterona/análisis , Virulencia , Replicación Viral
4.
Arch Virol ; 164(3): 739-745, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30631959

RESUMEN

African swine fever (ASF) is a contagious viral disease of wild and domestic pigs that is present in many parts of Africa, Asia and Europe, including Sardinia (Italy). Deletions in the EP402R and B602L genes have been found in almost all ASF virus (ASFV) strains circulating in Sardinia from 1990 onwards, and modern Sardinian strains (isolated after 1990) might have acquired some selective advantage compared to historical ones (isolated before 1990). Here, we analysed the host cell responses of wild boars and domestic pigs upon infection with virus variants. Higher intracellular levels of the late protein p72 were detected after infection with the modern strain 22653/14 compared to the historical strain Nu81.2, although both isolates grew at the same rate in both monocytes and monocyte-derived macrophages. Higher cytokine levels in the supernatants of ASFV-infected pig monocytes compared to pig macrophages and wild-boar cells were detected, with no differences between isolates.


Asunto(s)
Virus de la Fiebre Porcina Africana/fisiología , Fiebre Porcina Africana/virología , Macrófagos/virología , Monocitos/virología , Fiebre Porcina Africana/metabolismo , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/crecimiento & desarrollo , Animales , Células Cultivadas , Citocinas/metabolismo , Italia , Macrófagos/metabolismo , Monocitos/metabolismo , Sus scrofa , Porcinos , Proteínas Virales/genética , Proteínas Virales/metabolismo
5.
Int J Mol Sci ; 20(20)2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31615086

RESUMEN

MiRNAs, a small family of non-coding RNA, are now emerging as regulators of stem cell pluripotency, differentiation, and autophagy, thus controlling stem cell behavior. Stem cells are undifferentiated elements capable to acquire specific phenotype under different kind of stimuli, being a main tool for regenerative medicine. Within this context, we have previously shown that stem cells isolated from Wharton jelly multipotent stem cells (WJ-MSCs) exhibit gender differences in the expression of the stemness related gene OCT4 and the epigenetic modulator gene DNA-Methyltransferase (DNMT1). Here, we further analyze this gender difference, evaluating adipogenic and osteogenic differentiation potential, autophagic process, and expression of miR-145, miR-148a, and miR-185 in WJ-MSCs derived from males and females. These miRNAs were selected since they are involved in OCT4 and DNMT1 gene expression, and in stem cell differentiation. Our results indicate a difference in the regulatory circuit involving miR-148a/DNMT1/OCT4 autophagy in male WJ-MSCs as compared to female cells. Moreover, no difference was detected in the expression of the two-differentiation regulating miRNA (miR-145 and miR-185). Taken together, our results highlight a different behavior of WJ-MSCs from males and females, disclosing the chance to better understand cellular processes as autophagy and stemness, usable for future clinical applications.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/genética , MicroARNs/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes/metabolismo , Adipogénesis/genética , Autofagia/genética , Diferenciación Celular/genética , Epigénesis Genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética
6.
Int J Med Sci ; 14(7): 622-628, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28824293

RESUMEN

Micro-RNA (miRNA) are a family of small non-coding ribonucleic acids that inhibits post-transcriptionally the expression of their target messenger RNA (mRNA). We are interested in studying the involvement of miRNA in longevity and autoimmune diseases. In this study we compared the different expression of seven microRNAs between human plasma healthy controls, plasma samples of centenarians and samples from patients with rheumatoid arthritis. We used the Life Technologies' protocol to quantify seven miRNAs from 62 plasma samples: 20 healthy human controls, 14 centenarians, 28 patients with rheumatoid arthritis. TaqMan MicroRNA assays were used to analyze the expression profiles of miR-125b-5p, miR-425-5p, miR-200b5p, miR-200c-3p, miR-579-3p, miR-212-3p, miR-21-5p and miR-126-3p. The relative expression of mature miRNAs was analyzed using software REST. Our results show that miR-425-5p, miR-21 and miR-212 significantly decreased in centenarians and in patients with rheumatoid arthritis compared with controls. Furthermore in this work we highlight a connection between corticosteroid treatment and miRNAs expression.


Asunto(s)
Artritis Reumatoide/genética , Regulación de la Expresión Génica/genética , MicroARNs/genética , Anciano de 80 o más Años , Artritis Reumatoide/sangre , Artritis Reumatoide/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Longevidad/genética , Masculino , ARN Mensajero/genética
7.
Molecules ; 20(10): 19030-40, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26492230

RESUMEN

MicroRNAs (miRNAs) represent a family of small non-coding ribonucleic acids that post-transcriptionally inhibits the expression of their target messenger RNAs (mRNAs), thereby acting as general gene repressors. In this study we examined the relative quantity and stability of miRNA subjected to a long period of freezing; we compared the stability of eight miRNAs in the plasma of five human healthy controls before freezing and after six and 12 months of storage at -80 °C. In addition, we examined the plasma frozen for 14 years and the amount of miRNA still available. Using a Life Technologies protocol to amplify and quantify plasma miRNAs from EDTA (Ethylene Diamine Tetraacetic Acid)-treated blood, we analyzed the stability of eight miRNAs, (miR-125b-5p, miR-425-5p, miR-200b-5p, miR-200c-3p, miR-579-3p, miR-212-3p, miR-126-3p, and miR-21-5p). The miRNAs analyzed showed a high stability and long frozen half-life.


Asunto(s)
Perfilación de la Expresión Génica/métodos , MicroARNs/sangre , MicroARNs/química , Estabilidad del ARN , Adulto , Conservación de la Sangre , Criopreservación , Semivida , Voluntarios Sanos , Humanos , Persona de Mediana Edad
8.
Viruses ; 16(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38932224

RESUMEN

Porcine parvoviruses (PPVs) are among the most important agents of reproductive failure in swine worldwide. PPVs comprise eight genetically different species ascribed to four genera: Protoparvovirus (PPV1, PPV8), Tetraparvovirus (PPV2-3), Copiparvovirus (PPV4-6), and Chaphamaparvovirus (PPV7). In 2016, PPV7 was firstly detected in the USA and afterwards in Europe, Asia, and South America. Recently, it was also identified in Italy in pig farms with reproductive failure. This study aimed to evaluate the circulation of PPV7 in domestic and wild pigs in Sardinia, Italy. In addition, its coinfection with Porcine Circovirus 2 (PCV2) and 3 (PCV3) was analysed, and PPV7 Italian strains were molecularly characterised. PPV7 was detected in domestic pigs and, for the first time, wild pigs in Italy. The PPV7 viral genome was detected in 20.59% of domestic and wild pig samples. PPV7 detection was significantly lower in domestic pigs, with higher PCV2/PCV3 co-infection rates observed in PPV7-positive than in PPV7-negative domestic pigs. Molecular characterisation of the NS1 gene showed a very high frequency of recombination that could presumably promote virus spreading.


Asunto(s)
Coinfección , Infecciones por Parvoviridae , Parvovirus Porcino , Filogenia , Enfermedades de los Porcinos , Animales , Parvovirus Porcino/genética , Parvovirus Porcino/clasificación , Parvovirus Porcino/aislamiento & purificación , Italia/epidemiología , Infecciones por Parvoviridae/veterinaria , Infecciones por Parvoviridae/epidemiología , Infecciones por Parvoviridae/virología , Porcinos , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/epidemiología , Coinfección/virología , Coinfección/veterinaria , Coinfección/epidemiología , Genoma Viral , Circovirus/genética , Circovirus/clasificación , Circovirus/aislamiento & purificación , Infecciones por Circoviridae/veterinaria , Infecciones por Circoviridae/virología , Infecciones por Circoviridae/epidemiología , ADN Viral/genética
9.
Viruses ; 15(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36851642

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the importance of having proper tools and models to study the pathophysiology of emerging infectious diseases to test therapeutic protocols, assess changes in viral phenotypes, and evaluate the effects of viral evolution. This study provided a comprehensive characterization of the Syrian hamster (Mesocricetus auratus) as an animal model for SARS-CoV-2 infection using different approaches (description of clinical signs, viral load, receptor profiling, and host immune response) and targeting four different organs (lungs, intestine, brain, and PBMCs). Our data showed that both male and female hamsters were susceptible to the infection and developed a disease similar to the one observed in patients with COVID-19 that included moderate to severe pulmonary lesions, inflammation, and recruitment of the immune system in the lungs and at the systemic level. However, all animals recovered within 14 days without developing the severe pathology seen in humans, and none of them died. We found faint evidence for intestinal and neurological tropism associated with the absence of lesions and a minimal host response in intestines and brains, which highlighted another crucial difference with the multiorgan impairment of severe COVID-19. When comparing male and female hamsters, we observed that males sustained higher viral RNA shedding and replication in the lungs, suffered from more severe symptoms and histopathological lesions, and triggered higher pulmonary inflammation. Overall, these data confirmed the Syrian hamster as a suitable model for mild to moderate COVID-19 and reflected sex-related differences in the response against the virus observed in humans.


Asunto(s)
COVID-19 , Animales , Cricetinae , Humanos , Femenino , Masculino , Mesocricetus , SARS-CoV-2 , Conducta Sexual , Caracteres Sexuales
10.
Vaccines (Basel) ; 11(7)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37515092

RESUMEN

African swine fever virus (ASFV) is the etiological agent of a haemorrhagic disease that threatens the global pig industry. There is an urgency to develop a safe and efficient vaccine, but the knowledge of the immune-pathogenetic mechanisms behind ASFV infection is still very limited. In this paper, we evaluated the haematological and immunological parameters of domestic pigs vaccinated with the ASFV Lv17/WB/Rie1 strain or its derived mutant Lv17/WB/Rie1/d110-11L and then challenged with virulent Armenia/07 ASFV. Circulating levels of C-reactive protein (CRP), 13 key cytokines and 11 haematological parameters were evaluated throughout the study. Lv17/WB/Rie1 triggered an inflammatory response, with increased levels of CRP and pro-inflammatory cytokines, and induced lymphopenia, thrombocytopenia and a decline in red blood cell (RBC) parameters, although this was transitory. Lv17/WB/Rie1/d110-11L triggered only transitory thrombocytopenia and a mild inflammatory reaction, with no increase in serum levels of pro-inflammatory cytokines, but it raised IL-1Ra levels. Both strains counteracted several adverse reactions elicited by virulent challenge, like thrombocytopenia, a decline in RBC parameters, and inflammation. Within this paper, we provided a deep portrayal of the impact of diverse ASFV strains on the domestic pig's immune system. A better understanding of these immune-pathological mechanisms would help to design suitable vaccines against this disease.

11.
Vet Sci ; 10(10)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37888547

RESUMEN

Porcine respiratory disease complex (PRDC) represents a significant threat to the swine industry, causing economic losses in pigs worldwide. Recently, beyond the endemic viruses PRRSV and PCV2, emerging viruses such as TTSuV, PCV3, and PPV2, have been associated with PRDC, but their role remains unclear. This study investigates the presence of PCV2 and PRRSV and emerging viruses (PCV3, TTSuV, and PPV2) in the lungs of swine belonging to different age groups by histopathology and real-time PCR. The prevalent lung lesion was interstitial pneumonia with increased severity in post-weaning pigs. PRRSV was detected in 33% of piglets' lungs and in 20% of adults and post-weaning pigs with high Ct, while PCV2 was found in 100% of adult pigs, 33% of post-weaning pigs, and 22% of piglets, with low Ct in post-weaning pigs. PCV3 was present in all categories and coexisted with other viruses. TTSuV was detected in all swine in combination with other viruses, possibly influencing the disease dynamics, while PPV2 was detected in 100% of adults' and 90% of piglets' lungs. The detection of TTSuV, PCV3, and PPV2 in affected pigs prioritizes the need for comprehensive approaches in implementing appropriate control measures and minimizing economic losses associated with PRDC.

12.
Viruses ; 15(11)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-38005836

RESUMEN

Porcine Circovirus type 2 (PCV2) is the etiological agent of a disease syndrome named Porcine Circovirus disease (PCVD), representing an important threat for the pig industry. The increasing international trade of live animals and the development of intensive pig farming seem to have sustained the spreading of PCVD on a global scale. Recent classification criteria allowed the identification of nine different PCV2 genotypes (PCV2a-i). PCV2a was the first genotype detected with the highest frequency from the late 1990s to 2000, which was then superseded by PCV2b (first genotype shift). An ongoing genotype shift is now determining increasing prevalence rates of PCV2d, in replacement of PCV2b. In Italy, a complete genotype replacement was not evidenced yet. The present study was carried out on 369 samples originating from domestic pigs, free-ranging pigs, and wild boars collected in Sardinia between 2020 and 2022, with the aim to update the last survey performed on samples collected during 2009-2013. Fifty-seven complete ORF2 sequences were obtained, and the phylogenetic and network analyses evidenced that 56 out of 57 strains belong to the PCV2d genotype and only one strain to PCV2b, thus showing the occurrence of a genotype shift from PCV2b to PCV2d in Sardinia.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Enfermedades de los Porcinos , Porcinos , Animales , Filogenia , Circovirus/genética , Comercio , Infecciones por Circoviridae/epidemiología , Infecciones por Circoviridae/veterinaria , Enfermedades de los Porcinos/epidemiología , Internacionalidad , Sus scrofa , Genotipo , Italia/epidemiología
13.
Viruses ; 16(1)2023 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-38257733

RESUMEN

African swine fever (ASF) is a devastating infectious disease of domestic pigs and wild boar that is spreading quickly around the world and causing huge economic losses. Although the development of effective vaccines is currently being attempted by several labs, the absence of globally recognized licensed vaccines makes disease prevention and early detection even more crucial. ASF has spread across many countries in Europe and about two years ago affected the Italian susceptible population. In Italy, the first case of ASF genotype II in wild boar dates back to January 2022, while the first outbreak in a domestic pig farm was notified in August 2023. Currently, four clusters of infection are still ongoing in northern (Piedmont-Liguria and Lombardy), central (Lazio), and southern Italy (Calabria and Campania). In early September 2023, the first case of ASFV genotype II was detected in a domestic pig farm in Sardinia, historically affected by genotype I and in the final stage of eradication. Genomic characterization of p72, p54, and I73R/I329L genome regions revealed 100% similarity to those obtained from isolates that have been circulating in mainland Italy since January 2022 and also with international strains. The outbreak was detected and confirmed due to the passive surveillance plan on domestic pig farms put in place to provide evidence on genotype I's absence. Epidemiological investigations suggest 24 August as the most probable time of ASFV genotype II's arrival in Sardinia, likely due to human activities.


Asunto(s)
Fiebre Porcina Africana , Genotipo , Animales , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/genética , Italia/epidemiología , Sus scrofa , Vacunas
14.
Front Immunol ; 14: 1209898, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469517

RESUMEN

Introduction: Extracellular vesicles (EVs) are nanometric-membrane-bound sub-cellular structures, which can be recovered from milk. Milk EVs have drawn increasing interest due to their potential biomedical applications, therefore it is important to investigate their impact on key immune cells, such as macrophages. Methods: In this work, the immunomodulatory effects of goat milk EVs on untreated (moMФ) and classically activated (moM1) porcine monocyte-derived macrophages were investigated using flow cytometry, ELISA, and gene expression assays. Results: These particles were efficiently internalized by macrophages and high doses (60 mg protein weight) triggered the upregulation of MHC I and MHC II DR on moMФ, but not on moM1. In moMФ, exposure to low doses (0.6 mg) of mEVs enhanced the gene expression of IL10, EBI3, and IFNB, whereas high doses up-regulated several pro-inflammatory cytokines. These nanosized structures slightly modulated cytokine gene expression on moM1. Accordingly, the cytokine (protein) contents in culture supernatants of moMФ were mildly affected by exposure to low doses of mEVs, whereas high doses promoted the increased release of TNF, IL-8, IL-1a, IL-1b, IL-1Ra, IL-6, IL-10, and IL-12. The cytokines content in moM1 supernatants was not critically affected. Discussion: Overall, our data support a clinical application of these molecules: they polarized macrophages toward an M1-like phenotype, but this activation seemed to be controlled, to prevent potentially pathological over-reaction to stressors.


Asunto(s)
Vesículas Extracelulares , Leche , Animales , Porcinos , Leche/metabolismo , Macrófagos , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Cabras
16.
Talanta ; 258: 124443, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36933298

RESUMEN

African swine fever (ASF) is a severe haemorrhagic infectious disease affecting suids, thus representing a great economic concern. Considering the importance of the early diagnosis, rapid point of care testing (POCT) for ASF is highly demanded. In this work, we developed two strategies for the rapid onsite diagnosis of ASF, based on Lateral Flow Immunoassay (LFIA) and Recombinase Polymerase Amplification (RPA) techniques. The LFIA was a sandwich-type immunoassay exploiting a monoclonal antibody directed towards the p30 protein of the virus (Mab). The Mab was anchored onto the LFIA membrane to capture the ASFV and was also labelled with gold nanoparticles for staining the antibody-p30 complex. However, the use of the same antibody for capturing and as detector ligand showed a significant competitive effect for antigen binding, so required an experimental design to minimize reciprocal interference and maximize the response. The RPA assay, employing primers to the capsid protein p72 gene and an exonuclease III probe, was performed at 39 °C. The limit of detection of the method was assessed using a plasmid encoding the target gene and resulted in 5 copy/µL. The new LFIA and RPA were applied for ASFV detection in the animal tissues usually analysed by conventional assays (i.e., real-time PCR), such as kidney, spleen, and lymph nodes. A simple and universal virus extraction protocol was applied for sample preparation, followed by DNA extraction and purification for the RPA. The LFIA only required the addition of 3% H2O2 to limit matrix interference and prevent false positive results. The two rapid methods (25 min and 15 min were needed to complete the analysis for RPA and LFIA, respectively) showed high diagnostic specificity (100%) and sensitivity (93% and 87% for LFIA and RPA, respectively) for samples with high viral load (Ct < 27). False negative results were observed for samples with low viral load (Ct > 28) and/or also containing specific antibodies to ASFV, which decreased antigen availability and were indicative of a chronic, poorly transmissible infection. The simple and rapid sample preparation and the diagnostic performance of the LFIA suggested its large practical applicability for POC diagnosis of ASF.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Nanopartículas del Metal , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/diagnóstico , Oro , Peróxido de Hidrógeno , Recombinasas , Anticuerpos Monoclonales
17.
Viruses ; 15(2)2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36851491

RESUMEN

Understanding how geography and human mobility shape the patterns and spread of infectious diseases such as COVID-19 is key to control future epidemics. An interesting example is provided by the second wave of the COVID-19 epidemic in Europe, which was facilitated by the intense movement of tourists around the Mediterranean coast in summer 2020. The Italian island of Sardinia is a major tourist destination and is widely believed to be the origin of the second Italian wave. In this study, we characterize the genetic variation among SARS-CoV-2 strains circulating in northern Sardinia during the first and second Italian waves using both Illumina and Oxford Nanopore Technologies Next Generation Sequencing methods. Most viruses were placed into a single clade, implying that despite substantial virus inflow, most outbreaks did not spread widely. The second epidemic wave on the island was actually driven by local transmission of a single B.1.177 subclade. Phylogeographic analyses further suggest that those viral strains circulating on the island were not a relevant source for the second epidemic wave in Italy. This result, however, does not rule out the possibility of intense mixing and transmission of the virus among tourists as a major contributor to the second Italian wave.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Epidemiología Molecular , Italia/epidemiología , Filogeografía , Variación Genética
18.
Vaccines (Basel) ; 10(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35632463

RESUMEN

African swine fever virus (ASFV) is the etiological agent of a highly lethal disease in both domestic and wild pigs. The virus has rapidly spread worldwide and has no available licensed vaccine. An obstacle to the construction of a safe and efficient vaccine is the lack of a suitable cell line for ASFV isolation and propagation. Macrophages are the main targets for ASFV, and they have been widely used to study virus-host interactions; nevertheless, obtaining these cells is time-consuming and expensive, and they are not ethically suitable for the production of large-scale vaccines. To overcome these issues, different virulent field isolates have been adapted on monkey or human continuous cells lines; however, several culture passages often lead to significant genetic modifications and the loss of immunogenicity of the adapted strain. Thus, several groups have attempted to establish a porcine cell line able to sustain ASFV growth. Preliminary data suggested that some porcine continuous cell lines might be an alternative to primary macrophages for ASFV research and for large-scale vaccine production, although further studies are still needed. In this review, we summarize the research to investigate the most suitable cell line for ASFV isolation and propagation.

19.
Vet Sci ; 9(9)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36136710

RESUMEN

Swine production represents a significant component in agricultural economies as it occupies over 30% of global meat demand. Infectious diseases could constrain the swine health and productivity of the global swine industry. In particular, emerging swine viral diseases are omnipresent in swine populations, but the limited knowledge of the pathogenesis and the scarce information related to associated lesions restrict the development of data-based control strategies aimed to reduce the potentially great impact on the swine industry. In this paper, we reviewed and summarized the main pathological findings related to emerging viruses, such as Senecavirus A, Torque teno sus virus, and Linda virus, suggesting a call for further multidisciplinary studies aimed to fill this lack of knowledge and better clarify the potential role of those viral diseases in swine pathology.

20.
Pathogens ; 11(2)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35215110

RESUMEN

African swine fever viruses (ASFV), currently a serious threat to the global pig industry, primarily target porcine macrophages. Macrophages are characterized by their remarkable plasticity, being able to modify their phenotype and functions in response to diverse stimuli. Since IL-10 and TGF-ß polarize macrophages toward an anti-inflammatory phenotype, we analyzed their impact on porcine monocyte-derived macrophages' (moMΦ) susceptibility to infection and their responses to two genotype I ASFV strains, virulent 26544/OG10 and attenuated NH/P68. At a low multiplicity of infection (MOI), NH/P68, but not 26544/OG10, presented a higher ability to infect moM(IL-10) compared to moMΦ and moM(TGF-ß), but no differences were appreciated at a higher MOI. Both strains replicated efficiently in all moMΦ subsets, with no differences at later times post-infection. Both strains downregulated CD14 and CD16 expression on moMΦ, irrespective of the activation status. ASFV's modulation of CD163 and MHC II DR expression and cytokine responses to NH/P68 or 26544/OG10 ASFV were not affected by either IL-10 or TGF-ß pre-treatment. Our results revealed little impact of these anti-inflammatory cytokines on moMΦ interaction with ASFV, which likely reflects the ability of the virus to effectively modulate macrophage responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA