Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Biochem Biophys Res Commun ; 531(4): 497-502, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32807497

RESUMEN

Current anabolic drugs to treat osteoporosis and other disorders of low bone mass all have important limitations in terms of toxicity, contraindications, or poor efficacy in certain contexts. Addressing these limitations will require a better understanding of the molecular pathways, such as the mitogen activated protein kinase (MAPK) pathways, that govern osteoblast differentiation and, thereby, skeletal mineralization. Whereas MAP3Ks functioning in the extracellular signal-regulated kinases (ERK) and p38 pathways have been identified in osteoblasts, MAP3Ks mediating proximal activation of the c-Jun N-terminal kinase (JNK) pathway have yet to be identified. Here, we demonstrate that thousand-and-one kinase 3 (TAOK3, MAP3K18) functions as an upstream activator of the JNK pathway in osteoblasts both in vitro and in vivo. Taok3-deficient osteoblasts displayed defective JNK pathway activation and a marked decrease in osteoblast differentiation markers and defective mineralization, which was also confirmed using TAOK3 deficient osteoblasts derived from human MSCs. Additionally, reduced expression of Taok3 in a murine model resulted in osteopenia that phenocopies aspects of the Jnk1-associated skeletal phenotype such as occipital hypomineralization. Thus, in vitro and in vivo evidence supports TAOK3 as a proximal activator of the JNK pathway in osteoblasts that plays a critical role in skeletal mineralization.


Asunto(s)
Calcificación Fisiológica/fisiología , Diferenciación Celular , Osteoblastos/citología , Proteínas Serina-Treonina Quinasas/genética , Animales , Células Cultivadas , Fémur/citología , Fémur/diagnóstico por imagen , Expresión Génica , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Ratones Endogámicos C57BL , Ratones Mutantes , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Osteoblastos/fisiología , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Microtomografía por Rayos X
2.
Proc Natl Acad Sci U S A ; 113(9): E1226-35, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26884171

RESUMEN

Proper tuning of ß-catenin activity in osteoblasts is required for bone homeostasis, because both increased and decreased ß-catenin activity have pathologic consequences. In the classical pathway for ß-catenin activation, stimulation with WNT ligands suppresses constitutive phosphorylation of ß-catenin by glycogen synthase kinase 3ß, preventing ß-catenin ubiquitination and proteasomal degradation. Here, we have found that mitogen-activated protein kinase kinase kinase 2 (MAP3K2 or MEKK2) mediates an alternative pathway for ß-catenin activation in osteoblasts that is distinct from the canonical WNT pathway. FGF2 activates MEKK2 to phosphorylate ß-catenin at serine 675, promoting recruitment of the deubiquitinating enzyme, ubiquitin-specific peptidase 15 (USP15). USP15 in turn prevents the basal turnover of ß-catenin by inhibiting its ubiquitin-dependent proteasomal degradation, thereby enhancing WNT signaling. Analysis of MEKK2-deficient mice and genetic interaction studies between Mekk2- and ß-catenin-null alleles confirm that this pathway is an important physiologic regulator of bone mass in vivo. Thus, an FGF2/MEKK2 pathway mediates an alternative nonclassical pathway for ß-catenin activation, and this pathway is a key regulator of bone formation by osteoblasts.


Asunto(s)
Desarrollo Óseo , MAP Quinasa Quinasa Quinasa 2/metabolismo , beta Catenina/metabolismo , Animales , Ratones , Tamaño de los Órganos , Osteoblastos/citología , Fosforilación
3.
Int J Mol Sci ; 20(8)2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31013682

RESUMEN

Mitogen-activated protein kinases (MAPKs) are a family of protein kinases that function as key signal transducers of a wide spectrum of extracellular stimuli, including growth factors and pro-inflammatory cytokines. Dysregulation of the extracellular signal-regulated kinase (ERK) MAPK pathway is associated with human skeletal abnormalities including Noonan syndrome, neurofibromatosis type 1, and cardiofaciocutaneous syndrome. Here, we demonstrate that ERK activation in osteoprogenitors is required for bone formation during skeletal development and homeostasis. Deletion of Mek1 and Mek2, kinases upstream of ERK MAPK, in osteoprogenitors (Mek1OsxMek2-/-), resulted in severe osteopenia and cleidocranial dysplasia (CCD), similar to that seen in humans and mice with impaired RUNX2 function. Additionally, tamoxifen-induced deletion of Mek1 and Mek2 in osteoprogenitors in adult mice (Mek1Osx-ERTMek2-/-) significantly reduced bone mass. Mechanistically, this corresponded to decreased activation of osteoblast master regulators, including RUNX2, ATF4, and ß-catenin. Finally, we identified potential regulators of osteoblast differentiation in the ERK MAPK pathway using unbiased phospho-mass spectrometry. These observations demonstrate essential roles of ERK activation in osteogenesis and bone formation.


Asunto(s)
Desarrollo Óseo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Homeostasis , Sistema de Señalización de MAP Quinasas , Animales , Biomarcadores , Desarrollo Óseo/genética , Huesos/metabolismo , Huesos/patología , Diferenciación Celular , Displasia Cleidocraneal/genética , Displasia Cleidocraneal/metabolismo , Displasia Cleidocraneal/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Inmunohistoquímica , Ratones , Ratones Noqueados , Osteoblastos/citología , Osteoblastos/metabolismo , Osteogénesis/genética
4.
PLoS Biol ; 12(6): e1001881, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24914685

RESUMEN

Rheumatoid arthritis (RA) is a systemic autoimmune disorder that manifests as chronic inflammation and joint tissue destruction. However, the etiology and pathogenesis of RA have not been fully elucidated. Here, we explored the role of the hypoxia-inducible factors (HIFs), HIF-1α (encoded by HIF1A) and HIF-2α (encoded by EPAS1). HIF-2α was markedly up-regulated in the intimal lining of RA synovium, whereas HIF-1α was detected in a few cells in the sublining and deep layer of RA synovium. Overexpression of HIF-2α in joint tissues caused an RA-like phenotype, whereas HIF-1α did not affect joint architecture. Moreover, a HIF-2α deficiency in mice blunted the development of experimental RA. HIF-2α was expressed mainly in fibroblast-like synoviocytes (FLS) of RA synovium and regulated their proliferation, expression of RANKL (receptor activator of nuclear factor-κB ligand) and various catabolic factors, and osteoclastogenic potential. Moreover, HIF-2α-dependent up-regulation of interleukin (IL)-6 in FLS stimulated differentiation of TH17 cells-crucial effectors of RA pathogenesis. Additionally, in the absence of IL-6 (Il6-/- mice), overexpression of HIF-2α in joint tissues did not cause an RA phenotype. Thus, our results collectively suggest that HIF-2α plays a pivotal role in the pathogenesis of RA by regulating FLS functions, independent of HIF-1α.


Asunto(s)
Artritis Experimental/etiología , Artritis Reumatoide/etiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Animales , Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/inmunología , Diferenciación Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Fenotipo , Membrana Sinovial/metabolismo , Células Th17/citología , Regulación hacia Arriba
5.
J Biol Chem ; 290(1): 284-95, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25406311

RESUMEN

An improved understanding of the molecular pathways that drive tooth morphogenesis and enamel secretion is needed to generate teeth from organ cultures for therapeutic implantation or to determine the pathogenesis of primary disorders of dentition (Abdollah, S., Macias-Silva, M., Tsukazaki, T., Hayashi, H., Attisano, L., and Wrana, J. L. (1997) J. Biol. Chem. 272, 27678-27685). Here we present a novel ectodermal dysplasia phenotype associated with conditional deletion of p38α MAPK in ectodermal appendages using K14-cre mice (p38α(K14) mice). These mice display impaired patterning of dental cusps and a profound defect in the production and biomechanical strength of dental enamel because of defects in ameloblast differentiation and activity. In the absence of p38α, expression of amelogenin and ß4-integrin in ameloblasts and p21 in the enamel knot was significantly reduced. Mice lacking the MAP2K MKK6, but not mice lacking MAP2K MKK3, also show the enamel defects, implying that MKK6 functions as an upstream kinase of p38α in ectodermal appendages. Lastly, stimulation with BMP2/7 in both explant culture and an ameloblast cell line confirm that p38α functions downstream of BMPs in this context. Thus, BMP-induced activation of the p38α MAPK pathway is critical for the morphogenesis of tooth cusps and the secretion of dental enamel.


Asunto(s)
Ameloblastos/metabolismo , Esmalte Dental/metabolismo , Regulación del Desarrollo de la Expresión Génica , Incisivo/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Odontogénesis/genética , Ameloblastos/citología , Amelogenina/genética , Amelogenina/metabolismo , Animales , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 7/genética , Proteína Morfogenética Ósea 7/metabolismo , Diferenciación Celular , Proliferación Celular , Esmalte Dental/citología , Esmalte Dental/crecimiento & desarrollo , Incisivo/citología , Incisivo/crecimiento & desarrollo , Integrina beta4/genética , Integrina beta4/metabolismo , MAP Quinasa Quinasa 3/genética , MAP Quinasa Quinasa 3/metabolismo , MAP Quinasa Quinasa 6/genética , MAP Quinasa Quinasa 6/metabolismo , Ratones , Ratones Transgénicos , Proteína Quinasa 14 Activada por Mitógenos/genética , Transducción de Señal , Técnicas de Cultivo de Tejidos , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
6.
Ann Rheum Dis ; 74(3): 595-602, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24347567

RESUMEN

OBJECTIVE: Hypoxia-inducible factor 2α (HIF-2α), encoded by Epas1, causes osteoarthritic cartilage destruction by regulating the expression of matrix-degrading enzymes. We undertook this study to explore the role of nicotinamide phosphoribosyltransferase (NAMPT or visfatin) in HIF-2α-mediated osteoarthritic cartilage destruction. METHODS: The expression of HIF-2α, NAMPT and matrix-degrading enzymes was determined at the mRNA and protein levels in human osteoarthritis (OA) cartilage, mouse experimental OA cartilage and primary cultured mouse chondrocytes. Experimental OA in mice was induced by destabilisation of the medial meniscus (DMM) surgery or intra-articular injection of Ad-Epas1 or Ad-Nampt in wild-type, Epas1(+/-), Epas1(fl/fl);Col2a1-Cre and Col2a1-Nampt transgenic (TG) mice. Primary cultured mouse chondrocytes were treated with recombinant NAMPT protein or were infected with adenoviruses. RESULTS: We found that the Nampt gene is a direct target of HIF-2α in articular chondrocytes and OA cartilage. NAMPT protein, in turn, increased mRNA levels and activities of MMP3, MMP12 and MMP13 in chondrocytes, an action that was necessary for HIF-2α-induced expression of catabolic enzymes. Gain-of-function studies (intra-articular injection of Ad-Nampt; Col2a1-Nampt TG mice) and loss-of-function studies (intra-articular injection of the NAMPT inhibitor FK866) demonstrated that NAMPT is an essential catabolic regulator of osteoarthritic cartilage destruction caused by HIF-2α or DMM surgery. CONCLUSIONS: Our findings indicate that NAMPT, whose corresponding gene is a direct target of HIF-2α, plays an essential catabolic role in OA pathogenesis and acts as a crucial mediator of osteoarthritic cartilage destruction caused by HIF-2α or DMM surgery.


Asunto(s)
Artritis Experimental/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Colágeno Tipo II/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Osteoartritis/metabolismo , Agrecanos/metabolismo , Animales , Cartílago Articular/citología , Humanos , Metaloproteinasas de la Matriz/metabolismo , Meniscos Tibiales/cirugía , Ratones , Ratones Endogámicos C57BL , Regulación hacia Arriba
7.
Arthritis Rheum ; 64(8): 2568-78, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22488261

RESUMEN

OBJECTIVE: Dkk is a family of canonical Wnt antagonists with 4 members (Dkk-1, Dkk-2, Dkk-3, and Dkk-4). We undertook this study to explore the roles of Dkk-1 and Dkk-2 in osteoarthritic (OA) cartilage destruction in mice. METHODS: Expression of Dkk and other catabolic factors was determined at the messenger RNA and protein levels in human and mouse OA cartilage. Experimental OA in mice was induced by destabilization of the medial meniscus (DMM) or by intraarticular injection of Epas1 adenovirus (AdEPAS-1). The role of Dkk in OA pathogenesis was examined by intraarticular injection of AdDkk-1 or by using chondrocyte-specific Dkk1 (Col2a1-Dkk1)-transgenic mice and Dkk2 (Col2a1-Dkk2)-transgenic mice. Primary culture mouse chondrocytes were also treated with recombinant Dkk proteins. RESULTS: We found opposite patterns of Dkk1 and Dkk2 expression in human and mouse experimental OA cartilage: Dkk1 was up-regulated and Dkk2 was down-regulated. Overexpression of Dkk1 by intraarticular injection of AdDkk-1 significantly inhibited DMM-induced experimental OA. DMM-induced OA was also significantly inhibited in Col2a1-Dkk1-transgenic mice compared with their wild-type littermates. However, Col2a1-Dkk2-transgenic mice showed no significant difference in OA pathogenesis. Wnt-3a, which activates the canonical Wnt pathway, induced Mmp13 and Adamts4 expression in primary culture chondrocytes, an effect that was significantly inhibited by Dkk-1 pretreatment or Dkk1 overexpression. CONCLUSION: Our findings indicate that expression of Dkk1, but not Dkk2, in chondrocytes inhibits OA cartilage destruction. The protective effect of Dkk-1 appears to be associated with its capacity to inhibit Wnt-mediated expression of catabolic factors, such as Mmp13, providing evidence that Dkk-1 might serve as a therapeutic target for OA treatment.


Asunto(s)
Cartílago/patología , Condrocitos/metabolismo , Condrocitos/patología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Anciano , Animales , Apoptosis , Modelos Animales de Enfermedad , Regulación hacia Abajo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Meniscos Tibiales/cirugía , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Persona de Mediana Edad , Osteoartritis/etiología , Lesiones de Menisco Tibial , Regulación hacia Arriba , Vía de Señalización Wnt
8.
J Biol Chem ; 286(31): 27206-13, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21652695

RESUMEN

We have shown that cytokine-like 1 (Cytl1) is a novel autocrine regulatory factor that regulates chondrogenesis of mouse mesenchymal cells (Kim, J. S., Ryoo, Z. Y., and Chun, J. S. (2007) J. Biol. Chem. 282, 29359-29367). In this previous work, we found that Cytl1 expression was very low in mesenchymal cells, increased dramatically during chondrogenesis, and decreased during hypertrophic maturation, both in vivo and in vitro. Moreover, exogenous addition or ectopic expression of Cytl1 caused chondrogenic differentiation of mouse limb bud mesenchymal cells. In the current study, we generated a Cytl1 knock-out (Cytl1(-/-)) mouse to investigate the in vivo role of Cytl1. Deletion of the Cytl1 gene did not affect chondrogenesis or cartilage development. Cytl1(-/-) mice also showed normal endochondral ossification and long bone development. Additionally, ultrastructural features of articular cartilage, such as matrix organization and chondrocyte morphology, were similar in wild-type and Cytl1(-/-) mice. However, Cytl1(-/-) mice were more sensitive to osteoarthritic (OA) cartilage destruction. Compared with wild-type littermates, Cytl1(-/-) mice showed more severe OA cartilage destruction upon destabilization of the medial meniscus of mouse knee joints. In addition, expression levels of Cytl1 were markedly decreased in OA cartilage of humans and experimental mice. Taken together, our results suggest that, rather than regulating cartilage and bone development, Cytl1 is required for the maintenance of cartilage homeostasis, and loss of Cytl1 function is associated with experimental OA cartilage destruction in mice.


Asunto(s)
Desarrollo Óseo/fisiología , Cartílago Articular/fisiología , Osteoartritis/patología , Receptores de Citocinas/fisiología , Animales , Secuencia de Bases , Cartílago Articular/patología , Cartílago Articular/ultraestructura , Células Cultivadas , Cartilla de ADN , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Receptores de Citocinas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Cancer Res ; 81(6): 1528-1539, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33509942

RESUMEN

EGFR is frequently amplified, mutated, and overexpressed in malignant gliomas. Yet the EGFR-targeted therapies have thus far produced only marginal clinical responses, and the underlying mechanism remains poorly understood. Using an inducible oncogenic EGFR-driven glioma mouse model system, our current study reveals that a small population of glioma cells can evade therapy-initiated apoptosis and potentiate relapse development by adopting a mesenchymal-like phenotypic state that no longer depends on oncogenic EGFR signaling. Transcriptome analyses of proximal and distal treatment responses identified TGFß/YAP/Slug signaling cascade activation as a major regulatory mechanism that promotes therapy-induced glioma mesenchymal lineage transdifferentiation. Following anti-EGFR treatment, TGFß secreted from stressed glioma cells acted to promote YAP nuclear translocation that stimulated upregulation of the pro-mesenchymal transcriptional factor SLUG and subsequent glioma lineage transdifferentiation toward a stable therapy-refractory state. Blockade of this adaptive response through suppression of TGFß-mediated YAP activation significantly delayed anti-EGFR relapse and prolonged animal survival. Together, our findings shed new insight into EGFR-targeted therapy resistance and suggest that combinatorial therapies of targeting both EGFR and mechanisms underlying glioma lineage transdifferentiation could ultimately lead to deeper and more durable responses. SIGNIFICANCE: This study demonstrates that molecular reprogramming and lineage transdifferentiation underlie anti-EGFR therapy resistance and are clinically relevant to the development of new combinatorial targeting strategies against malignant gliomas with aberrant EGFR signaling.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Transdiferenciación Celular/efectos de los fármacos , Glioma/tratamiento farmacológico , Recurrencia Local de Neoplasia/epidemiología , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Transdiferenciación Celular/genética , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/genética , Glioma/mortalidad , Glioma/patología , Proteínas de Homeodominio/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/prevención & control , Pronóstico , Supervivencia sin Progresión , RNA-Seq , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Señalizadoras YAP
10.
Methods Mol Biol ; 1890: 239-248, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30414159

RESUMEN

Recent reports emphasized the role of FOXO family of transcription factors in nervous system homeostasis. Most studies employed primary neuronal cultures, established animal models for neuropathology, or invertebrate models. Demonstration of the normal and pathophysiological function of mammalian FOXO under complex in vivo conditions requires genetic study. Therefore, the conditional knockout mouse is an invaluable platform. Here, we describe the methods of establishing and analyzing nervous system-specific ablation of FOXO isoforms in mice. This chapter offers a detailed method to validate the deletion of Foxo genes in vivo and to study its role in the nervous system. Investigation of FOXO function by using the mouse system may advance our understanding of nervous system aging as well as neurodegenerative diseases.


Asunto(s)
Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Inmunohistoquímica , Ratones , Ratones Noqueados , Especificidad de Órganos , Médula Espinal/metabolismo
11.
J Cell Biochem ; 105(6): 1443-50, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18980250

RESUMEN

Limited information is available on the expression and role of matrix metalloproteinase (MMP)-12 in chondrocytes. We characterized the expression mechanism of MMP-12 and possible function in chondrocytes. Interleukin (IL)-1beta induced the expression and activation of MMP-12 in primary culture chondrocytes and cartilage explants via mitogen-activated protein (MAP) kinase signaling pathways. Among MAP kinases, extracellular signal-regulated kinase and p38 kinase are necessary for MMP-12 expression, whereas c-jun N-terminal kinase is required for the activation of MMP-12. The possibility that MMP-12 acts as a modulator of other MMP was examined. MMP-12 alone did not affect other MMP expressions. However, MMP-12 enhanced expression and activation of MMP-9 in the presence of IL-1beta. Our results indicate that IL-1beta in chondrocytes induces the expression and activation of MMP-12, which, in turn, augments MMP-9 expression and activation.


Asunto(s)
Condrocitos/enzimología , Interleucina-1beta/farmacología , Metaloproteinasa 12 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Animales , Condrocitos/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas , Metaloproteinasa 12 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Ratones , Conejos
12.
Stem Cell Reports ; 10(4): 1208-1221, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29606613

RESUMEN

Loss of a cell's ability to terminally differentiate because of mutations is a selected genetic event in tumorigenesis. Genomic analyses of low-grade glioma have reported recurrent mutations of far upstream element-binding protein 1 (FUBP1). Here, we show that FUBP1 expression is dynamically regulated during neurogenesis and that its downregulation in neural progenitors impairs terminal differentiation and promotes tumorigenesis collaboratively with expression of IDH1R132H. Mechanistically, collaborative action between SRRM4 and FUBP1 is necessary for mini-exon splicing of the neurospecific LSD1+8a isoform. LSD1+8a was downregulated upon loss of FUBP1 in neural progenitors, thereby impairing terminal neuronal differentiation and maturation. Reinforcing LSD1+8a expression in FUBP1-downregulated neural progenitors restored terminal differentiation and suppressed tumorigenesis; hence, LSD1+8a is an obligatory effector of FUBP1-dependent neuronal differentiation. These findings establish a direct role for FUBP1 in neuronal differentiation and also explain its tumor-suppressor function in the nervous system.


Asunto(s)
Empalme Alternativo/genética , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Histona Demetilasas/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Animales Recién Nacidos , Carcinogénesis/metabolismo , Carcinogénesis/patología , Exones/genética , Ratones , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo
13.
Aging Cell ; 17(1)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29178390

RESUMEN

Neurodegeneration resulting in cognitive and motor impairment is an inevitable consequence of aging. Little is known about the genetic regulation of this process despite its overriding importance in normal aging. Here, we identify the Forkhead Box O (FOXO) transcription factor 1, 3, and 4 isoforms as a guardian of neuronal integrity by inhibiting age-progressive axonal degeneration in mammals. FOXO expression progressively increased in aging human and mouse brains. The nervous system-specific deletion of Foxo transcription factors in mice accelerates aging-related axonal tract degeneration, which is followed by motor dysfunction. This accelerated neurodegeneration is accompanied by levels of white matter astrogliosis and microgliosis in middle-aged Foxo knockout mice that are typically only observed in very old wild-type mice and other aged mammals, including humans. Mechanistically, axonal degeneration in nerve-specific Foxo knockout mice is associated with elevated mTORC1 activity and accompanying proteotoxic stress due to decreased Sestrin3 expression. Inhibition of mTORC1 by rapamycin treatment mimics FOXO action and prevented axonal degeneration in Foxo knockout mice with accelerated nervous system aging. Defining this central role for FOXO in neuroprotection during mammalian aging offers an invaluable window into the aging process itself.


Asunto(s)
Axones/metabolismo , Factores de Transcripción Forkhead/metabolismo , Envejecimiento/metabolismo , Animales , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Noqueados , Sustancias Protectoras/metabolismo , Sustancias Protectoras/farmacología , Transducción de Señal
14.
J Exp Med ; 212(8): 1283-301, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26195726

RESUMEN

Physiological bone remodeling requires that bone formation by osteoblasts be tightly coupled to bone resorption by osteoclasts. However, relatively little is understood about how this coupling is regulated. Here, we demonstrate that modulation of NF-κB signaling in osteoclasts via a novel activity of charged multivesicular body protein 5 (CHMP5) is a key determinant of systemic rates of bone turnover. A conditional deletion of CHMP5 in osteoclasts leads to increased bone resorption by osteoclasts coupled with exuberant bone formation by osteoblasts, resembling an early onset, polyostotic form of human Paget's disease of bone (PDB). These phenotypes are reversed by haploinsufficiency for Rank, as well as by antiresorptive treatments, including alendronate, zolendronate, and OPG-Fc. Accordingly, CHMP5-deficient osteoclasts display increased RANKL-induced NF-κB activation and osteoclast differentiation. Biochemical analysis demonstrated that CHMP5 cooperates with the PDB genetic risk factor valosin-containing protein (VCP/p97) to stabilize the inhibitor of NF-κBα (IκBα), down-regulating ubiquitination of IκBα via the deubiquitinating enzyme USP15. Thus, CHMP5 tunes NF-κB signaling downstream of RANK in osteoclasts to dampen osteoclast differentiation, osteoblast coupling and bone turnover rates, and disruption of CHMP5 activity results in a PDB-like skeletal disorder.


Asunto(s)
Desarrollo Óseo/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , FN-kappa B/metabolismo , Osteoclastos/metabolismo , Transducción de Señal/fisiología , Adenosina Trifosfatasas/metabolismo , Animales , Secuencia de Bases , Desarrollo Óseo/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/fisiología , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Proteínas I-kappa B/metabolismo , Immunoblotting , Inmunohistoquímica , Hibridación in Situ , Luciferasas , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Inhibidor NF-kappaB alfa , Osteoblastos/citología , Ligando RANK/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN , Ubiquitinación , Proteína que Contiene Valosina
15.
J Bone Miner Res ; 27(6): 1335-44, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22407773

RESUMEN

Developing cartilage serves as a template for long-bone development during endochondral ossification. Although the coupling of cartilage and bone development with angiogenesis is an important regulatory step for endochondral ossification, the molecular mechanisms are poorly understood. One possible mechanism involves the action of Dickkopf (DKK), which is a family of soluble canonical Wnt antagonists with four members (DKK1-4). We initially observed opposite expression patterns of Dkk1 and Dkk2 during angiogenesis and chondrocyte differentiation: downregulation of Dkk1 and upregulation of Dkk2. We examined the in vivo role of Dkk1 and Dkk2 in linking cartilage/bone development and angiogenesis by generating transgenic (TG) mice that specifically express Dkk1 or Dkk2 in chondrocytes, hypertrophic chondrocytes, or endothelial cells. Despite specific expression pattern during cartilage development, chondrocyte- and hypertrophic chondrocyte-specific Dkk1 and Dkk2 TG mice showed normal developmental phenotypes. However, Dkk1 misexpression in endothelial cells resulted in defects of endochondral ossification and reduced skeletal size. The defects are caused by the inhibition of angiogenesis in developing bone and subsequent inhibition of apoptosis of hypertrophic chondrocytes and cartilage resorption.


Asunto(s)
Condrocitos/metabolismo , Condrocitos/patología , Condrogénesis , Células Endoteliales/metabolismo , Células Endoteliales/patología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Osteogénesis , Animales , Apoptosis , Tamaño Corporal , Peso Corporal , Resorción Ósea/metabolismo , Resorción Ósea/patología , Resorción Ósea/fisiopatología , Huesos/metabolismo , Huesos/patología , Huesos/fisiopatología , Cartílago/metabolismo , Cartílago/patología , Hipertrofia , Ratones , Ratones Transgénicos , Neovascularización Fisiológica , Especificidad de Órganos , Ligando RANK/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor TIE-2
16.
Nat Med ; 16(6): 687-93, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20495569

RESUMEN

Osteoarthritic cartilage destruction is caused by an imbalance between anabolic and catabolic factors. Here, we show that hypoxia-inducible factor-2alpha (HIF-2alpha, encoded by EPAS1) is a catabolic transcription factor in the osteoarthritic process. HIF-2alpha directly induces the expression in chondrocytes of genes encoding catabolic factors, including matrix metalloproteinases (MMP1, MMP3, MMP9, MMP12 and MMP13), aggrecanase-1 (ADAMTS4), nitric oxide synthase-2 (NOS2) and prostaglandin-endoperoxide synthase-2 (PTGS2). HIF-2alpha expression was markedly increased in human and mouse osteoarthritic cartilage, and its ectopic expression triggered articular cartilage destruction in mice and rabbits. Moreover, mice transgenic for Epas1 only in chondrocytes showed spontaneous cartilage destruction, whereas heterozygous genetic deletion of Epas1 in mice suppressed cartilage destruction caused by destabilization of the medial meniscus (DMM) or collagenase injection, with concomitant modulation of catabolic factors. Our results collectively demonstrate that HIF-2alpha causes cartilage destruction by regulating crucial catabolic genes.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Cartílago/metabolismo , Osteoartritis/metabolismo , Factores de Transcripción/fisiología , Animales , Cartílago/fisiopatología , Condrocitos/metabolismo , Condrocitos/fisiología , Colagenasas/metabolismo , Colagenasas/fisiología , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/fisiología , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Genes/genética , Genes/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Endogámicos ICR , Ratones Transgénicos , Osteoartritis/fisiopatología , Conejos
17.
BMB Rep ; 41(7): 485-94, 2008 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-18682032

RESUMEN

The Wnt signaling network, which is composed of Wnt ligands, receptors, antagonists, and intracellular signaling molecules, has emerged as a powerful regulator of cell fate, proliferation, and function in multicellular organisms. Over the past two decades, the critical role of Wnt signaling in embryonic cartilage and bone development has been well established, and much has been learnt regarding the role of Wnt signaling in chondrogenesis and cartilage development. However, relatively little is known about the role of Wnt signaling in adult articular cartilage and degenerative cartilage tissue. This review will briefly summarize recent advances in Wnt regulation of chondrogenesis and hypertrophic maturation of chondrocytes, and review data concerning the role of Wnt signaling in the maintenance and degeneration of articular chondrocytes and cartilage.


Asunto(s)
Enfermedades de los Cartílagos/etiología , Condrogénesis/fisiología , Proteínas Wnt/fisiología , Animales , Cartílago/embriología , Cartílago/crecimiento & desarrollo , Enfermedades de los Cartílagos/genética , Condrocitos/fisiología , Condrogénesis/genética , Humanos , Modelos Biológicos , Osteoartritis/etiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas Wnt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA