Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
Inorg Chem ; 56(14): 7582-7597, 2017 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-28654276

RESUMEN

Over the last 3-4 decades, solid-state chemistry has emerged as the forefront of materials design and development. The field has revolutionized into a multidisciplinary subject and matured with a scope of new synthetic strategies, new challenges, and opportunities. Understanding the structure is very crucial in the design of appropriate materials for desired applications. Professor Mercouri G. Kanatzidis has encountered both challenges and opportunities during the course of the discovery of many novel materials. Throughout his scientific career, Mercouri and his group discovered several inorganic compounds and pioneered structure-property relationships. We, a few Ph.D. and postdoctoral students, celebrate his 60th birthday by providing a Viewpoint summarizing his contributions to inorganic solid-state chemistry. The topics discussed here are of significant interest to various scientific communities ranging from condensed matter to green energy production.

3.
Nano Lett ; 14(3): 1228-33, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24502837

RESUMEN

Cost effective hydrogen evolution reaction (HER) catalyst without using precious metallic elements is a crucial demand for environment-benign energy production. Molybdenum sulfide is one of the promising candidates for such purpose, particularly in acidic condition, but its catalytic performance is inherently limited by the sparse catalytic edge sites and poor electrical conductivity. We report synthesis and HER catalysis of hybrid catalysts composed of amorphous molybdenum sulfide (MoSx) layer directly bound at vertical N-doped carbon nanotube (NCNT) forest surface. Owing to the high wettability of N-doped graphitic surface and electrostatic attraction between thiomolybdate precursor anion and N-doped sites, ∼2 nm scale thick amorphous MoSx layers are specifically deposited at NCNT surface under low-temperature wet chemical process. The synergistic effect from the dense catalytic sites at amorphous MoSx surface and fluent charge transport along NCNT forest attains the excellent HER catalysis with onset overpotential as low as ∼75 mV and small potential of 110 mV for 10 mA/cm(2) current density, which is the highest HER activity of molybdenum sulfide-based catalyst ever reported thus far.

4.
J Am Chem Soc ; 134(35): 14604-8, 2012 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-22909125

RESUMEN

We report the synthesis of metal-chalcogenide aerogels from Pt(2+) and polysulfide clusters ([S(x)](2-), x = 3-6). The cross-linking reaction of these ionic building blocks in formamide solution results in spontaneous gelation and eventually forms a monolithic dark brown gel. The wet gel is transformed into a highly porous aerogel by solvent exchanging and subsequent supercritical drying with CO(2). The resulting platinum polysulfide aerogels possess a highly porous and amorphous structure with an intact polysulfide backbone. These chalcogels feature an anionic network that is charged balanced with potassium cations, and hosts highly accessible S-S bonding sites, which allows for reversible cation exchange and mercury vapor capture that is superior to any known material.

5.
Nat Commun ; 13(1): 7876, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564380

RESUMEN

Chalcogenide aerogels (chalcogels) are amorphous structures widely known for their lack of localized structural control. This study, however, demonstrates a precise multiscale structural control through a thiostannate motif ([Sn2S6]4-)-transformation-induced self-assembly, yielding Na-Mn-Sn-S, Na-Mg-Sn-S, and Na-Sn(II)-Sn(IV)-S aerogels. The aerogels exhibited [Sn2S6]4-:Mn2+ stoichiometric-variation-induced-control of average specific surface areas (95-226 m2 g-1), thiostannate coordination networks (octahedral to tetrahedral), phase crystallinity (crystalline to amorphous), and hierarchical porous structures (micropore-intensive to mixed-pore state). In addition, these chalcogels successfully adopted the structural motifs and ion-exchange principles of two-dimensional layered metal sulfides (K2xMnxSn3-xS6, KMS-1), featuring a layer-by-layer stacking structure and effective radionuclide (Cs+, Sr2+)-control functionality. The thiostannate cluster-based gelation principle can be extended to afford Na-Mg-Sn-S and Na-Sn(II)-Sn(IV)-S chalcogels with the same structural features as the Na-Mn-Sn-S chalcogels (NMSCs). The study of NMSCs and their chalcogel family proves that the self-assembly principle of two-dimensional chalcogenide clusters can be used to design unique chalcogels with unprecedented structural hierarchy.

6.
Nanoscale ; 14(26): 9331-9340, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35699141

RESUMEN

Molybdenum disulfide (MoS2)-based materials are extensively studied as promising hydrogen evolution reaction (HER) catalysts. In order to bring out the full potential of chalcogenide chemistry, precise control over the active sulfur sites and enhancement of electronic conductivity need to be achieved. This study develops a highly active HER catalyst with an optimized active site-controlled cobalt molybdenum sulfide (CoMo3S13) chalcogel/graphene oxide aerogel heterostructure. The highly active CoMo3S13 chalcogel catalyst was achieved by the synergetic catalytic sites of [Mo3S13]2- and the Mo-S-Co bridge. The optimized GO/CoMo3S13 chalcogel heterostructure catalyst exhibited high catalytic HER performance with an overvoltage of 130 mV, a current density of 10 mA cm-2, a small Tafel slope of 40.1 mV dec-1, and remarkable stability after 12 h of testing. This study presents a successful example of a synergistic heterostructure exploiting both the appealing electrical functionality of GO and catalytically active [Mo3S13]2- sites.

7.
ACS Appl Mater Interfaces ; 14(41): 46682-46694, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36201338

RESUMEN

Typical amorphous aerogels pose great potential for CO2 adsorbents with high surface areas and facile diffusion, but they lack well-defined porosity and specific selectivity, inhibiting utilization of their full functionality. To assign well-defined porous structures to aerogels, a hierarchical metal-organic aerogel (HMOA) is designed, which consists of well-defined micropores (d ∼ 1 nm) by coordinative integration with chromium(III) and organic ligands. Due to its hierarchical structure with intrinsically flexible coordination, the HMOA has excellent porous features of a high surface area and a reusable surface with appropriate binding energy for CO2 adsorption. The HMOA features high CO2 adsorption capacity, high CO2/N2 IAST selectivity, and vacuum-induced surface regenerability (100% through 20 cycles). Further, the HMOA could be prepared via simple ambient drying methods while retaining the microporous network. This unique surface-tension-resistant micropore formation and flexible coordination systems of HMOA make it a potential candidate for a CO2 adsorbent with industrial scalability and reproducibility.

8.
ACS Appl Mater Interfaces ; 8(38): 25438-43, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27575285

RESUMEN

Graphitic carbon nitride (g-C3N4) is a rising two-dimensional material possessing intrinsic semiconducting property with unique geometric configuration featuring superimposed heterocyclic sp(2) carbon and nitrogen network, nonplanar layer chain structure, and alternating buckling. The inherent porous structure of heptazine-based g-C3N4 features electron-rich sp(2) nitrogen, which can be exploited as a stable transition metal coordination site. Multiple metal-functionalized g-C3N4 systems have been reported for versatile applications, but local coordination as well as its electronic structure variation upon incoming metal species is not well understood. Here we present detailed bond coordination of divalent iron (Fe(2+)) through micropore sites of graphitic carbon nitride and provide both experimental and computational evidence supporting the aforementioned proposition. In addition, the utilization of electronic structure variation is demonstrated through comparative photocatalytic activities of pristine and Fe-g-C3N4.

9.
Nat Commun ; 7: 10364, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26796993

RESUMEN

Atomic level engineering of graphene-based materials is in high demand to enable customize structures and properties for different applications. Unzipping of the graphene plane is a potential means to this end, but uncontrollable damage of the two-dimensional crystalline framework during harsh unzipping reaction has remained a key challenge. Here we present heteroatom dopant-specific unzipping of carbon nanotubes as a reliable and controllable route to customized intact crystalline graphene-based nanostructures. Substitutional pyridinic nitrogen dopant sites at carbon nanotubes can selectively initiate the unzipping of graphene side walls at a relatively low electrochemical potential (0.6 V). The resultant nanostructures consisting of unzipped graphene nanoribbons wrapping around carbon nanotube cores maintain the intact two-dimensional crystallinity with well-defined atomic configuration at the unzipped edges. Large surface area and robust electrical connectivity of the synergistic nanostructure demonstrate ultrahigh-power supercapacitor performance, which can serve for AC filtering with the record high rate capability of -85° of phase angle at 120 Hz.

10.
ACS Nano ; 9(9): 9148-57, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26267150

RESUMEN

Energy-efficient CO2 capture is a stringent demand for green and sustainable energy supply. Strong adsorption is desirable for high capacity and selective capture at ambient conditions but unfavorable for regeneration of adsorbents by a simple pressure control process. Here we present highly regenerative and selective CO2 capture by carbon nitride functionalized porous reduced graphene oxide aerogel surface. The resultant structure demonstrates large CO2 adsorption capacity at ambient conditions (0.43 mmol·g(-1)) and high CO2 selectivity against N2 yet retains regenerability to desorb 98% CO2 by simple pressure swing. First-principles thermodynamics calculations revealed that microporous edges of graphitic carbon nitride offer the optimal CO2 adsorption by induced dipole interaction and allows excellent CO2 selectivity as well as facile regenerability. This work identifies a customized route to reversible gas capture using metal-free, two-dimensional carbonaceous materials, which can be extended to other useful applications.

11.
Adv Mater ; 26(1): 40-66, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24123343

RESUMEN

Outstanding pristine properties of carbon nanotubes and graphene have limited the scope for real-life applications without precise controllability of the material structures and properties. This invited article to celebrate the 25th anniversary of Advanced Materials reviews the current research status in the chemical modification/doping of carbon nanotubes and graphene and their relevant applications with optimized structures and properties. A broad aspect of specific correlations between chemical modification/doping schemes of the graphitic carbons with their novel tunable material properties is summarized. An overview of the practical benefits from chemical modification/doping, including the controllability of electronic energy level, charge carrier density, surface energy and surface reactivity for diverse advanced applications is presented, namely flexible electronics/optoelectronics, energy conversion/storage, nanocomposites, and environmental remediation, with a particular emphasis on their optimized interfacial structures and properties. Future research direction is also proposed to surpass existing technological bottlenecks and realize idealized graphitic carbon applications.

12.
ACS Nano ; 7(10): 8899-907, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24007296

RESUMEN

Complex nanopatterns integrating diverse nanocomponents are crucial requirements for advanced photonics and electronics. Currently, such multicomponent nanopatterns are principally created by colloidal nanoparticle assembly, where large-area processing of highly ordered nanostructures raises significant challenge. We present multicomponent nanopatterns enabled by block copolymer (BCP) self-assembly, which offers device oriented sub-10-nm scale nanopatterns with arbitrary large-area scalability. In this approach, BCP nanopatterns direct the nanoscale lateral ordering of the overlaid second level BCP nanopatterns to create the superimposed multicomponent nanopatterns incorporating nanowires and nanodots. This approach introduces diverse chemical composition of metallic elements including Au, Pt, Fe, Pd, and Co into sub-10-nm scale nanopatterns. As immediate applications of multicomponent nanopatterns, we demonstrate multilevel charge-trap memory device with Pt-Au binary nanodot pattern and synergistic plasmonic properties of Au nanowire-Pt nanodot pattern.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA