Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Sci ; 115(1): 298-309, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37942574

RESUMEN

Breast cancer patients with high levels of human epidermal growth factor receptor 2 (HER2) expression have worse clinical outcomes. Anti-HER2 monoclonal antibody (mAb) is the most important therapeutic modality for HER2-positive breast cancer. We previously immunized mice with the ectodomain of HER2 to create the anti-HER2 mAb, H2 Mab-77 (mouse IgG1 , kappa). This was then altered to produce H2 Mab-77-mG2a -f, an afucosylated mouse IgG2a . In the present work, we examined the reactivity of H2 Mab-77-mG2a -f and antitumor effects against breast cancers in vitro and in vivo. BT-474, an endogenously HER2-expressing breast cancer cell line, was identified by H2 Mab-77-mG2a -f with a strong binding affinity (a dissociation constant [KD ]: 5.0 × 10-9 M). H2 Mab-77-mG2a -f could stain HER2 of breast cancer tissues in immunohistochemistry and detect HER2 protein in Western blot analysis. Furthermore, H2 Mab-77-mG2a -f demonstrated strong antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) for BT-474 cells. MDA-MB-468, a HER2-negative breast cancer cell line, was unaffected by H2 Mab-77-mG2a -f. Additionally, in the BT-474-bearing tumor xenograft model, H2 Mab-77-mG2a -f substantially suppressed tumor development when compared with the control mouse IgG2a mAb. In contrast, the HER2-negative MDA-MB-468-bearing tumor xenograft model showed no response to H2 Mab-77-mG2a -f. These findings point to the possibility of H2 Mab-77-mG2a -f as a treatment regimen by showing that it has antitumor effects on HER2-positive breast tumors.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Ratones , Animales , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Receptor ErbB-2/metabolismo , Inmunoglobulina G , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339219

RESUMEN

Monoclonal antibody (mAb)-based and/or cell-based immunotherapies provide innovative approaches to cancer treatments. However, safety concerns over targeting normal cells expressing reactive antigens still exist. Therefore, the development of cancer-specific mAbs (CasMabs) that recognize cancer-specific antigens with in vivo antitumor efficacy is required to minimize the adverse effects. We previously screened anti-human epidermal growth factor receptor 2 (HER2) mAbs and successfully established a cancer-specific anti-HER2 mAb, H2Mab-250/H2CasMab-2 (IgG1, kappa). In this study, we showed that H2Mab-250 reacted with HER2-positive breast cancer cells but did not show reactivity to normal epithelial cells in flow cytometry. In contrast, a clinically approved anti-HER2 mAb, trastuzumab, recognized both breast cancer and normal epithelial cells. We further compared the affinity, effector activation, and antitumor effect of H2Mab-250 with trastuzumab. The results showed that H2Mab-250 exerted a comparable antitumor effect with trastuzumab in the mouse xenograft models of BT-474 and SK-BR-3, although H2Mab-250 possessed a lower affinity and effector activation than trastuzumab in vitro. H2Mab-250 could contribute to the development of chimeric antigen receptor-T or antibody-drug conjugates without adverse effects for breast cancer therapy.


Asunto(s)
Anticuerpos Monoclonales , Antineoplásicos , Neoplasias de la Mama , Animales , Femenino , Humanos , Ratones , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Xenoinjertos , Receptor ErbB-2/inmunología , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Curr Issues Mol Biol ; 45(10): 7734-7748, 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37886932

RESUMEN

The clinically approved human epidermal growth factor receptor 2 (HER2)-targeting monoclonal antibodies (mAbs), trastuzumab, and pertuzumab, target domains IV and II, respectively. Trastuzumab is now the standard treatment for HER2-overexpressed breast and gastric cancers, and trastuzumab in combination with pertuzumab showed clinical benefit. However, there still exist patients who do not respond to the therapy. Furthermore, HER2 mutants that cannot be recognized by pertuzumab were found in tumors. Therefore, novel anti-HER2 mAbs and modalities have been desired. In our previous study, we developed a novel anti-HER2 domain I mAb, H2Mab-139 (mouse IgG1, kappa). We herein produced a defucosylated mouse IgG2a type of mAb against HER2 (H2Mab-139-mG2a-f) to enhance antibody-dependent cellular cytotoxicity (ADCC)-mediated antitumor activity. H2Mab-139-mG2a-f exhibits a high binding affinity in flow cytometry with the dissociation constant (KD) determined to be 3.9 × 10-9 M and 7.7 × 10-9 M against HER2-overexpressed Chinese hamster ovary (CHO)-K1 (CHO/HER2) and HER2-positive BT-474 cells, respectively. Moreover, we showed that H2Mab-139-mG2a-f exerted ADCC and complement-dependent cytotoxicity against CHO/HER2 and BT-474 in vitro and exhibited potent antitumor activities in mouse xenograft models. These results indicated that H2Mab-139-mG2a-f exerts antitumor effects against HER2-positive human breast cancers and is useful as an antibody treatment for HER2-positive human cancers.

4.
Crit Rev Food Sci Nutr ; 63(24): 7148-7179, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35289676

RESUMEN

Epidemiological studies have shown that consumption of green tea, coffee, wine, and curry may contribute to a reduced risk of various cancers. However, there are some cancer site-specific differences in their effects; for example, the consumption of tea or wine may reduce bladder cancer risk, whereas coffee consumption may increase the risk. Animal and cell-based experiments have been used to elucidate the anticancer mechanisms of these compounds, with reactive oxygen species (ROS)-based mechanisms emerging as likely candidates. Chlorogenic acid (CGA), curcumin (CUR), epigallocatechin gallate (EGCG), and resveratrol (RSV) can act as antioxidants that activate AMP-activated protein kinase (AMPK) to downregulate ROS, and as prooxidants to generate ROS, leading to the downregulation of NF-κB. Polyphenols can modulate miRNA (miR) expression, with these dietary polyphenols shown to downregulate tumor-promoting miR-21. CUR, EGCG, and RSV can upregulate tumor-suppressing miR-16, 34a, 145, and 200c, but downregulate tumor-promoting miR-25a. CGA, EGCG, and RSV downregulate tumor-suppressing miR-20a, 93, and 106b. The effects of miRs may combine with ROS-mediated pathways, enhancing the anticancer effects of these polyphenols. More precise analysis is needed to determine how the different modulations of miRs by polyphenols relate to the cancer site-specific differences found in epidemiological studies related to the consumption of foods containing these polyphenols.


Asunto(s)
Catequina , Curcumina , MicroARNs , Neoplasias , Vino , Animales , Polifenoles/farmacología , , Café , Especies Reactivas de Oxígeno/metabolismo , Resveratrol/farmacología , Catequina/farmacología , Catequina/metabolismo , Curcumina/farmacología
5.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36675216

RESUMEN

Colorectal cancer (CRC) is the third most common type of cancer and the second leading cause of cancer deaths worldwide. Surgery or surgery plus radiotherapy and/or chemotherapy for patients with metastatic CRC (mCRC) were accepted as the main therapeutic strategies until the early 2000s, when targeted drugs, like cetuximab and bevacizumab, were developed. The use of targeted drugs in clinical practice has significantly increased patients' overall survival. To date, the emergence of several types of targeted drugs has opened new possibilities and revealed new prospects for mCRC treatment. Therapeutic strategies are continually being updated to select the most suitable targeted drugs based on the results of clinical trials that are currently underway. This review discusses the up-to date molecular evidence of targeted therapy for mCRC and summarizes the Food and Drug Administration-approved targeted drugs including the results of clinical trials. We also explain their mechanisms of action and how these affect the choice of a suitable targeted therapy.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Neoplasias del Recto , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Bevacizumab/uso terapéutico , Cetuximab/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Recto/tratamiento farmacológico , Terapia Molecular Dirigida , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
6.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38203331

RESUMEN

Podocalyxin (PODXL) overexpression is associated with poor clinical outcomes in various tumors. PODXL is involved in tumor malignant progression through the promotion of invasiveness and metastasis. Therefore, PODXL is considered a promising target of monoclonal antibody (mAb)-based therapy. However, PODXL also plays an essential role in normal cells, such as vascular and lymphatic endothelial cells. Therefore, cancer specificity or selectivity is required to reduce adverse effects on normal cells. Here, we developed an anti-PODXL cancer-specific mAb (CasMab), PcMab-6 (IgG1, kappa), by immunizing mice with a soluble PODXL ectodomain derived from a glioblastoma LN229 cell. PcMab-6 reacted with the PODXL-positive LN229 cells but not with PODXL-knockout LN229 cells in flow cytometry. Importantly, PcMab-6 recognized pancreatic ductal adenocarcinoma (PDAC) cell lines (MIA PaCa-2, Capan-2, and PK-45H) but did not react with normal lymphatic endothelial cells (LECs). In contrast, one of the non-CasMabs, PcMab-47, showed high reactivity to both the PDAC cell lines and LECs. Next, we engineered PcMab-6 into a mouse IgG2a-type (PcMab-6-mG2a) and a humanized IgG1-type (humPcMab-6) mAb and further produced the core fucose-deficient types (PcMab-6-mG2a-f and humPcMab-6-f, respectively) to potentiate the antibody-dependent cellular cytotoxicity (ADCC). Both PcMab-6-mG2a-f and humPcMab-6-f exerted ADCC and complement-dependent cellular cytotoxicity in the presence of effector cells and complements, respectively. In the PDAC xenograft model, both PcMab-6-mG2a-f and humPcMab-6-f exhibited potent antitumor effects. These results indicated that humPcMab-6-f could apply to antibody-based therapy against PODXL-expressing pancreatic cancers.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Sialoglicoproteínas , Humanos , Animales , Ratones , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Xenoinjertos , Células Endoteliales , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Inmunoglobulina G
7.
Molecules ; 28(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36677584

RESUMEN

Epidemiological studies have shown that the consumption of green tea has beneficial effects against cancer. Basic studies have provided evidence that epigallocatechin gallate (EGCG) is a major contributor to these effects. Matrix metalloproteinases (MMPs) are zinc-dependent metalloproteinases with the ability to degrade the extracellular matrix proteins and are involved in various diseases including cancer in which MMPs have a critical role in invasion and metastasis. In this review, we discuss the effects of EGCG on several types of MMPs in the context of its anticancer activity. In the promoter region, MMPs have binding sites for at least one transcription factor of AP-1, Sp1, and NF-κB, and EGCG can downregulate these transcription factors through signaling pathways mediated by reactive oxygen species. EGCG can also decrease nuclear ERK, p38, heat shock protein-27 (Hsp27), and ß-catenin levels, leading to suppression of MMPs' expression. Other mechanisms by which EGCG inhibits MMPs include direct binding to MMPs to prevent their activation and downregulation of NF-κB to suppress the production of inflammatory cytokines such as TNFα and IL-1ß. Findings from studies on EGCG presented here may be useful in the development of more effective anti-MMP agents, which would give beneficial effects on cancer and other diseases.


Asunto(s)
Antineoplásicos , Catequina , Metaloproteinasas de la Matriz , FN-kappa B , Catequina/farmacología , Metaloproteinasas de la Matriz/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Té/química , Antineoplásicos/farmacología
8.
Molecules ; 28(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37513300

RESUMEN

Matrix metalloproteinases (MMPs) are zinc-dependent metalloproteinases that play important roles in a variety of diseases, including cancer, cardiovascular disease, diabetes, obesity, and brain diseases. Dietary polyphenols are thought to have a variety of beneficial effects on these diseases characterized by inflammation. Clinical studies have demonstrated that MMPs are in most cases upregulated in various inflammatory diseases, including osteoarthritis, rheumatoid arthritis, inflammatory bowel disease, and Alzheimer's disease. Studies using patient-derived human samples, animal studies, and cellular experiments have suggested that polyphenols may be beneficial against inflammatory diseases by suppressing MMP gene expression and enzyme activity. One important mechanism by which polyphenols exert their activity is the downregulation of reactive oxygen species that promote MMP expression. Another important mechanism is the direct binding of polyphenols to MMPs and their inhibition of enzyme activity. Molecular docking analyses have provided a structural basis for the interaction between polyphenols and MMPs and will help to explore new polyphenol-based drugs with anti-inflammatory properties.


Asunto(s)
Antioxidantes , Polifenoles , Animales , Humanos , Simulación del Acoplamiento Molecular , Polifenoles/farmacología , Polifenoles/química , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Metaloproteinasas de la Matriz
9.
Arch Microbiol ; 204(10): 603, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36063223

RESUMEN

Lung cancer, the most prevalent gender-independent tumor entity in both men and women, is among the leading cause of cancer-related deaths worldwide. Despite decades of effort in developing improved therapeutic strategies including immunotherapies and novel chemotherapeutic agents, only modest improvements in outcome and long-term survival of lung cancer patients have been achieved. Therefore, exploring new and exceptional sources for bioactive compounds that might serve as anti-cancer agents might be the key to improving lung cancer therapy. On account of diverse forms, cyanobacteria might serve as a potential source for compounds with potential therapeutic applicability against malignant disorders, including cancer. The assorted arrays of metabolic mechanisms synthesize a plethora of bioactive compounds with immense biological potential. These compounds have been proven to be effective against various cancer cell lines and xenograft animal models. The present review provides an overview of the most promising cyanobacteria-derived bioactive compounds proven to exhibit anti-cancer properties in in-vitro and in-vivo studies and highlights their applicability as potential therapeutic agents with a focus on their anti-lung cancer properties.


Asunto(s)
Antineoplásicos , Cianobacterias , Neoplasias , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Cianobacterias/metabolismo , Femenino , Humanos
10.
Molecules ; 27(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35744941

RESUMEN

Consumption of coffee, tea, wine, curry, and soybeans has been linked to a lower risk of cancer in epidemiological studies. Several cell-based and animal studies have shown that dietary polyphenols like chlorogenic acid, curcumin, epigallocatechin-3-O-gallate, genistein, quercetin and resveratrol play a major role in these anticancer effects. Several mechanisms have been proposed to explain the anticancer effects of polyphenols. Depending on the cellular microenvironment, these polyphenols can exert double-faced actions as either an antioxidant or a prooxidant, and one of the representative anticancer mechanisms is a reactive oxygen species (ROS)-mediated mechanism. These polyphenols can also influence microRNA (miR) expression. In general, they can modulate the expression/activity of the constituent molecules in ROS-mediated anticancer pathways by increasing the expression of tumor-suppressive miRs and decreasing the expression of oncogenic miRs. Thus, miR modulation may enhance the anticancer effects of polyphenols through the ROS-mediated pathways in an additive or synergistic manner. More precise human clinical studies on the effects of dietary polyphenols on miR expression will provide convincing evidence of the preventive roles of dietary polyphenols in cancer and other diseases.


Asunto(s)
Catequina , MicroARNs , Neoplasias , Animales , Catequina/farmacología , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Polifenoles/farmacología , Especies Reactivas de Oxígeno , Resveratrol , Microambiente Tumoral
11.
Molecules ; 27(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36558031

RESUMEN

Plant polyphenols have various health effects. Genistein, which is abundant in soybeans, and epigallocatechin-3-gallate, which is abundant in green tea, are major flavonoids, a subclass group of polyphenols. Several epidemiological studies have shown that these flavonoids have beneficial effects against cancer and cardiovascular diseases. However, other studies did not show such effects. Several confounding factors, including recall bias, are related to these inconsistent findings, and the determination of metabolites in the urine may be useful in reducing the number of confounding factors. Equipment, which can be used by research participants to collect samples from a portion of voided urine within 24 h without the help of medical workers, has been developed for epidemiological investigations. Previous studies, in which flavonoid metabolites in these urine samples were measured, revealed that soy intake was correlated with a reduced risk of certain types of cancer and cardiovascular diseases worldwide. Although soybeans and green tea consumption may have protective effects against cancer and cardiovascular diseases, further clinical studies that consider different confounding factors are required to provide evidence for the actual impact of dietary flavonoids on human diseases, including cancer and cardiovascular diseases. One possible mechanism involved is discussed in relation to the downregulation of reactive oxygen species and the upregulation of 5'-adenosine monophosphate-activated protein kinase elicited by these flavonoids.


Asunto(s)
Enfermedades Cardiovasculares , Catequina , Neoplasias , Humanos , Catequina/farmacología , , Enfermedades Cardiovasculares/prevención & control , Neoplasias/prevención & control , Flavonoides/farmacología , Polifenoles/farmacología , Biomarcadores/orina , Genisteína , Glycine max
12.
Molecules ; 26(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466849

RESUMEN

Many observational and clinical studies have shown that consumption of diets rich in plant polyphenols have beneficial effects on various diseases such as cancer, obesity, diabetes, cardiovascular diseases, and neurodegenerative diseases (NDDs). Animal and cellular studies have indicated that these polyphenolic compounds contribute to such effects. The representative polyphenols are epigallocatechin-3-O-gallate in tea, chlorogenic acids in coffee, resveratrol in wine, and curcumin in curry. The results of human studies have suggested the beneficial effects of consumption of these foods on NDDs including Alzheimer's and Parkinson's diseases, and cellular animal experiments have provided molecular basis to indicate contribution of these representative polyphenols to these effects. This article provides updated information on the effects of these foods and their polyphenols on NDDs with discussions on mechanistic aspects of their actions mainly based on the findings derived from basic experiments.


Asunto(s)
Catequina/análogos & derivados , Ácido Clorogénico/uso terapéutico , Curcumina/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Resveratrol/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Antioxidantes/uso terapéutico , Catequina/uso terapéutico , Humanos , Fármacos Neuroprotectores/uso terapéutico
13.
Molecules ; 26(2)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467101

RESUMEN

Several epidemiological studies and clinical trials have reported the beneficial effects of green tea, coffee, wine, and curry on human health, with its anti-obesity, anti-cancer, anti-diabetic, and neuroprotective properties. These effects, which have been supported using cell-based and animal studies, are mainly attributed to epigallocatechin gallate found in green tea, chlorogenic acid in coffee, resveratrol in wine, and curcumin in curry. Polyphenols are proposed to function via various mechanisms, the most important of which is related to reactive oxygen species (ROS). These polyphenols exert conflicting dual actions as anti- and pro-oxidants. Their anti-oxidative actions help scavenge ROS and downregulate nuclear factor-κB to produce favorable anti-inflammatory effects. Meanwhile, pro-oxidant actions appear to promote ROS generation leading to the activation of 5'-AMP-activated protein kinase, which modulates different enzymes and factors with health beneficial roles. Currently, it remains unclear how these polyphenols exert either pro- or anti-oxidant effects. Similarly, several human studies showed no beneficial effects of these foods, and, by extension polyphenols, on obesity. These inconsistencies may be attributed to different confounding study factors. Thus, this review provides a state-of-the-art update on these foods and their principal polyphenol components, with an assumption that it prevents obesity.


Asunto(s)
Café/química , Depuradores de Radicales Libres , Obesidad/tratamiento farmacológico , Polifenoles , Té/química , Vino , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/uso terapéutico , Humanos , Obesidad/metabolismo , Obesidad/patología , Polifenoles/química , Polifenoles/uso terapéutico
14.
Int J Cancer ; 146(12): 3474-3484, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32144767

RESUMEN

Modulation of prostate stromal cells (PrSCs) within tumor tissues is gaining attention for the treatment of solid tumors. Using our original in vitro coculture system, we previously reported that leucinostatin (LCS)-A, a peptide mycotoxin, inhibited prostate cancer DU-145 cell growth through reduction of insulin-like growth factor 1 (IGF-I) expression in PrSCs. To further obtain additional bioactive compounds from LCS-A, we designed and synthesized a series of LCS-A derivatives as compounds that target PrSCs. Among the synthesized LCS-A derivatives, LCS-7 reduced IGF-I expression in PrSCs with lower toxicity to PrSCs and mice than LCS-A. As LCS-A has been suggested to interact with mitochondrial adenosine triphosphate (ATP) synthase, a docking study was performed to elucidate the mechanism of reduced IGF-I expression in the PrSCs. As expected, LCS-A and LCS-7 directly interacted with mitochondrial ATP synthase, and like LCS-A and LCS-7, other mitochondrial ATP synthase inhibitors also reduced the expression of IGF-I by PrSCs. Furthermore, LCS-A and LCS-7 significantly decreased the growth of mouse xenograft tumors. Based on these data, we propose that the mitochondrial ATP synthases-IGF-I axis of PrSCs plays a critical role on cancer cell growth and inhibition could be a potential anticancer target for prostate cancer.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Factor I del Crecimiento Similar a la Insulina/metabolismo , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , Neoplasias de la Próstata/tratamiento farmacológico , Células del Estroma/efectos de los fármacos , Animales , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Línea Celular Tumoral , Técnicas de Cocultivo , Femenino , Humanos , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Simulación del Acoplamiento Molecular , Próstata/citología , Próstata/efectos de los fármacos , Próstata/patología , Neoplasias de la Próstata/patología , Células del Estroma/metabolismo , Células del Estroma/patología , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Inflamm Res ; 69(5): 435-451, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32162012

RESUMEN

BACKGROUND: This review focuses on exosomes derived from various cancer cells. The review discusses the possibility of differentiating macrophages in alternatively activated anti-inflammatory pro-tumorigenic M2 macrophage phenotypes and classically activated pro-inflammatory, anti-tumorigenic M1 macrophage phenotypes in the tumor microenvironment (TME). The review is divided into two main parts, as follows: (1) role of exosomes in alternatively activating M2-like macrophages-breast cancer-derived exosomes, hepatocellular carcinoma (HCC) cell-derived exosomes, lung cancer-derived exosomes, prostate cancer-derived exosomes, Oral squamous cell carcinoma (OSCC)-derived exosomes, epithelial ovarian cancer (EOC)-derived exosomes, Glioblastoma (GBM) cell-derived exosomes, and colorectal cancer-derived exosomes, (2) role of exosomes in classically activating M1-like macrophages, oral squamous cell carcinoma-derived exosomes, breast cancer-derived exosomes, Pancreatic-cancer derived modified exosomes, and colorectal cancer-derived exosomes, and (3) exosomes and antibody-dependent cellular cytotoxicity (ADCC). This review addresses the following subjects: (1) crosstalk between cancer-derived exosomes and recipient macrophages, (2) the role of cancer-derived exosome payload(s) in modulating macrophage fate of differentiation, and (3) intracellular signaling mechanisms in macrophages regarding the exosome's payload(s) upon its uptake and regulation of the TME. EVIDENCE: Under the electron microscope, nanoscale exosomes appear as specialized membranous vesicles that emerge from the endocytic cellular compartments. Exosomes harbor proteins, growth factors, cytokines, lipids, miRNA, mRNA, and DNAs. Exosomes are released by many cell types, including reticulocytes, dendritic cells, B-lymphocytes, platelets, mast cells, and tumor cells. It is becoming clear that exosomes can impinge upon signal transduction pathways, serve as a mediator of signaling crosstalk, thereby regulating cell-to-cell wireless communications. CONCLUSION: Based on the vesicular cargo, the molecular constituents, the exosomes have the potential to change the fate of macrophage phenotypes, either M1, classically activated macrophages, or M2, alternatively activated macrophages. In this review, we discuss and describe the ability of tumor-derived exosomes in the mechanism of macrophage activation and polarization.


Asunto(s)
Exosomas/inmunología , Macrófagos/inmunología , Neoplasias/inmunología , Animales , Humanos , Fenotipo
16.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32839411

RESUMEN

The now clinically-used anti-epidermal growth factor receptor (EGFR) monoclonal antibodies have demonstrated significant efficacy only in patients with metastatic colorectal cancer (mCRC), with wild-type Kirsten rat sarcoma viral oncogene homolog (KRAS). However, no effective treatments for patients with mCRC with KRAS mutated tumors have been approved yet. Therefore, a new strategy for targeting mCRC with KRAS mutated tumors is desired. In the present study, we examined the anti-tumor activities of a novel anti-EGFR monoclonal antibody, EMab-17 (mouse IgG2a, kappa), in colorectal cancer (CRC) cells with the KRAS p.G13D mutation. This antibody recognized endogenous EGRF in CRC cells with or without KRAS mutations, and showed a high sensitivity for CRC cells in flow cytometry, indicating that EMab-17 possesses a high binding affinity to the endogenous EGFR. In vitro experiments showed that EMab-17 exhibited antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity activities against CRC cells. In vivo analysis revealed that EMab-17 inhibited the metastases of HCT-15 and HCT-116 cells in the livers of nude mouse metastatic models, unlike the anti-EGFR monoclonal antibody EMab-51 of subtype mouse IgG1. In conclusion, EMab-17 may be useful in an antibody-based therapy against mCRC with the KRAS p.G13D mutation.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos Inmunológicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Citotoxicidad Celular Dependiente de Anticuerpos , Células CHO , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Proteínas del Sistema Complemento/genética , Cricetulus , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/inmunología , Femenino , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/secundario , Ratones , Ratones Desnudos , Proteínas Proto-Oncogénicas p21(ras)/inmunología , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Molecules ; 25(19)2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33027981

RESUMEN

Tea and coffee are consumed worldwide and epidemiological and clinical studies have shown their health beneficial effects, including anti-cancer effects. Epigallocatechin gallate (EGCG) and chlorogenic acid (CGA) are the major components of green tea polyphenols and coffee polyphenols, respectively, and believed to be responsible for most of these effects. Although a large number of cell-based and animal experiments have provided convincing evidence to support the anti-cancer effects of green tea, coffee, EGCG, and CGA, human studies are still controversial and some studies have suggested even an increased risk for certain types of cancers such as esophageal and gynecological cancers with green tea consumption and bladder and lung cancers with coffee consumption. The reason for these inconsistent results may have been arisen from various confounding factors. Cell-based and animal studies have proposed several mechanisms whereby EGCG and CGA exert their anti-cancer effects. These components appear to share the common mechanisms, among which one related to reactive oxygen species is perhaps the most attractive. Meanwhile, EGCG and CGA have also different target molecules which might explain the site-specific differences of anti-cancer effects found in human studies. Further studies will be necessary to clarify what is the mechanism to cause such differences between green tea and coffee.


Asunto(s)
Antineoplásicos Fitogénicos , Antioxidantes , Catequina/análogos & derivados , Ácido Clorogénico , Café/química , Neoplasias/tratamiento farmacológico , Té/química , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/uso terapéutico , Antioxidantes/química , Antioxidantes/uso terapéutico , Catequina/química , Catequina/uso terapéutico , Ácido Clorogénico/química , Ácido Clorogénico/uso terapéutico , Humanos , Neoplasias/metabolismo , Neoplasias/patología
18.
Helicobacter ; 23(2): e12470, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29488678

RESUMEN

BACKGROUND: Helicobacter pylori (H. pylori) infection causes various gastrointestinal diseases including gastric cancer. Hence, eradication of this infection could prevent these diseases. The most popular first-line treatment protocol to eradicate H. pylori is termed "triple therapy" and consists of a proton pump inhibitor (PPI), clarithromycin, and amoxicillin or metronidazole. However, the antibiotics used to treat H. pylori infection are hindered by the antibiotics-resistant bacteria and by their antimicrobial activity against intestinal bacteria, leading to side effects. Therefore, an alternative treatment with fewer adverse side effects is urgently required to improve the overall eradication rate of H. pylori. OBJECTIVE: The aim of this study was to assess the effectiveness and mechanism of action of an antitumor agent, intervenolin, and its derivatives as an agent for the treatment of H. pylori infection. RESULTS: We demonstrate that intervenolin, and its derivatives showed selective anti-H. pylori activity, including antibiotic-resistant strains, without any effect on intestinal bacteria. We showed that dihydroorotate dehydrogenase, a key enzyme for de novo pyrimidine biosynthesis, is a target and treatment with intervenolin or its derivatives decreased the protein and mRNA levels of H. pylori urease, which protects H. pylori against acidic conditions in the stomach. Using a mouse model of H. pylori infection, oral monotherapy with the intervenolin derivative AS-1934 had a stronger anti-H. pylori effect than the triple therapy commonly used worldwide to eradicate H. pylori. CONCLUSION: AS-1934 has potential advantages over current treatment options for H. pylori infection.


Asunto(s)
Infecciones por Helicobacter/tratamiento farmacológico , Quinolonas/uso terapéutico , Antibacterianos/uso terapéutico , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/patogenicidad , Humanos , Resultado del Tratamiento
19.
Chem Pharm Bull (Tokyo) ; 66(3): 239-242, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29491257

RESUMEN

Helicobacter pylori (H. pylori) infection is the world's most common bacterial infection, affecting approximately 50% of the global population. H. pylori is the strongest known risk factor for stomach diseases, including cancer. Hence, treatment for H. pylori infection can help reduce the risk of these diseases. However, the emergence of drug-resistant strains of H. pylori and the occurrence of adverse effects resulting from current therapies have complicated the successful eradication of H. pylori infection. Although various antibiotics that target several bacterial enzymes have been discovered, dihydroorotate dehydrogenase (DHODH) may hold potential for the development of novel anti-H. pylori agents with reduced toxicity and side effects. Here we review the existing literature that has focused on strategies for developing novel therapeutic agents that target the DHODH of H. pylori.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Helicobacter pylori/efectos de los fármacos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Antibacterianos/química , Antibacterianos/uso terapéutico , Dihidroorotato Deshidrogenasa , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Humanos , Pruebas de Sensibilidad Microbiana , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Nucleótidos de Pirimidina/biosíntesis
20.
Molecules ; 23(6)2018 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-29843466

RESUMEN

Tea is one of the most consumed beverages in the world. Green tea, black tea, and oolong tea are made from the same plant Camellia sinensis (L.) O. Kuntze. Among them, green tea has been the most extensively studied for beneficial effects on diseases including cancer, obesity, diabetes, and inflammatory and neurodegenerative diseases. Several human observational and intervention studies have found beneficial effects of tea consumption on neurodegenerative impairment, such as cognitive dysfunction and memory loss. These studies supported the basis of tea's preventive effects of Parkinson's disease, but few studies have revealed such effects on Alzheimer's disease. In contrast, several human studies have not reported these favorable effects with regard to tea. This discrepancy may be due to incomplete adjustment of confounding factors, including the method of quantifying consumption, beverage temperature, cigarette smoking, alcohol consumption, and differences in genetic and environmental factors, such as race, sex, age, and lifestyle. Thus, more rigorous human studies are required to understand the neuroprotective effect of tea. A number of laboratory experiments demonstrated the benefits of green tea and green tea catechins (GTCs), such as epigallocatechin gallate (EGCG), and proposed action mechanisms. The targets of GTCs include the abnormal accumulation of fibrous proteins, such as Aß and α-synuclein, inflammation, elevated expression of pro-apoptotic proteins, and oxidative stress, which are associated with neuronal cell dysfunction and death in the cerebral cortex. Computational molecular docking analysis revealed how EGCG can prevent the accumulation of fibrous proteins. These findings suggest that GTCs have the potential to be used in the prevention and treatment of neurodegenerative diseases and could be useful for the development of new drugs.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Catequina/análogos & derivados , Catequina/farmacología , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/prevención & control , Té/química , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/química , Camellia sinensis/química , Catequina/química , Catequina/aislamiento & purificación , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Humanos , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , alfa-Sinucleína/antagonistas & inhibidores , alfa-Sinucleína/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA