Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 24(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37108484

RESUMEN

Diet influences the pathogenesis and clinical course of inflammatory bowel disease (IBD). The Mediterranean diet (MD) is linked to reductions in inflammatory biomarkers and alterations in microbial taxa and metabolites associated with health. We aimed to identify features of the gut microbiome that mediate the relationship between the MD and fecal calprotectin (FCP) in ulcerative colitis (UC). Weighted gene co-expression network analysis (WGCNA) was used to identify modules of co-abundant microbial taxa and metabolites correlated with the MD and FCP. The features considered were gut microbial taxa, serum metabolites, dietary components, short-chain fatty acid and bile acid profiles in participants that experienced an increase (n = 13) or decrease in FCP (n = 16) over eight weeks. WGCNA revealed ten modules containing sixteen key features that acted as key mediators between the MD and FCP. Three taxa (Faecalibacterium prausnitzii, Dorea longicatena, Roseburia inulinivorans) and a cluster of four metabolites (benzyl alcohol, 3-hydroxyphenylacetate, 3-4-hydroxyphenylacetate and phenylacetate) demonstrated a strong mediating effect (ACME: -1.23, p = 0.004). This study identified a novel association between diet, inflammation and the gut microbiome, providing new insights into the underlying mechanisms of how a MD may influence IBD. See clinicaltrials.gov (NCT04474561).


Asunto(s)
Colitis Ulcerosa , Dieta Mediterránea , Enfermedades Inflamatorias del Intestino , Humanos , Colitis Ulcerosa/microbiología , Enfermedades Inflamatorias del Intestino/microbiología , Inflamación/genética , Biomarcadores , Heces/microbiología
2.
J Nutr ; 151(6): 1426-1435, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33694368

RESUMEN

BACKGROUND: Oat has been widely accepted as a key food for human health. It is becoming increasingly evident that individual differences in metabolism determine how different individuals benefit from diet. Both host genetics and the gut microbiota play important roles on the metabolism and function of dietary compounds. OBJECTIVES: To investigate the mechanism of individual variations in response to whole-grain (WG) oat intake. METHODS: We used the combination of in vitro incubation assays with human gut microbiota, mouse and human S9 fractions, chemical analyses, germ-free (GF) mice, 16S rRNA sequencing, gnotobiotic techniques, and a human feeding study. RESULTS: Avenanthramides (AVAs), the signature bioactive polyphenols of WG oat, were not metabolized into their dihydro forms, dihydro-AVAs (DH-AVAs), by both human and mouse S9 fractions. DH-AVAs were detected in the colon and the distal regions but not in the proximal and middle regions of the perfused mouse intestine, and were in specific pathogen-free (SPF) mice but not in GF mice. A kinetic study of humans fed oat bran showed that DH-AVAs reached their maximal concentrations at much later time points than their corresponding AVAs (10.0-15.0 hours vs. 4.0-4.5 hours, respectively). We observed interindividual variations in the metabolism of AVAs to DH-AVAs in humans. Faecalibacterium prausnitzii was identified as the individual bacterium to metabolize AVAs to DH-AVAs by 16S rRNA sequencing analysis. Moreover, as opposed to GF mice, F. prausnitzii-monocolonized mice were able to metabolize AVAs to DH-AVAs. CONCLUSIONS: These findings demonstrate that the presence of intestinal F. prausnitzii is indispensable for proper metabolism of AVAs in both humans and mice. We propose that the abundance of F. prausnitzii can be used to subcategorize individuals into AVA metabolizers and nonmetabolizers after WG oat intake. This study was registered at clinicaltrials.gov as NCT04335435.


Asunto(s)
Avena , Faecalibacterium prausnitzii , Microbioma Gastrointestinal , ortoaminobenzoatos/metabolismo , Animales , Avena/química , Dieta , Humanos , Ratones , ARN Ribosómico 16S/genética
3.
Carcinogenesis ; 39(8): 1068-1078, 2018 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-29846515

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the United States yet data are scant regarding host factors influencing pancreatic carcinogenesis. Increasing evidence support the role of the host microbiota in carcinogenesis but its role in PDAC is not well established. Herein, we report that antibiotic-mediated microbial depletion of KrasG12D/PTENlox/+ mice showed a decreased proportion of poorly differentiated tumors compared to microbiota-intact KrasG12D/PTENlox/+ mice. Subsequent 16S rRNA PCR showed that ~50% of KrasG12D/PTENlox/+ mice with PDAC harbored intrapancreatic bacteria. To determine if a similar observation in humans correlates with presence of PDAC, benign and malignant human pancreatic surgical specimens demonstrated a microbiota by 16S bacterial sequencing and culture confirmation. However, the microbial composition did not differentiate PDAC from non-PDAC tissue. Furthermore, murine pancreas did not naturally acquire a pancreatic microbiota, as germ-free mice transferred to specific pathogen-free housing failed to acquire intrapancreatic bacteria over time, which was not augmented by a murine model of colitis. Finally, antibiotic-mediated microbial depletion of Nod-SCID mice, compared to microbiota-intact, showed increased time to PDAC xenograft formation, smaller tumors, and attenuated growth. Interestingly, both xenograft cohorts were devoid of intratumoral bacteria by 16S rRNA PCR, suggesting that intrapancreatic/intratumoral microbiota is not the sole driver of PDAC acceleration. Xenografts from microbiota-intact mice demonstrated innate immune suppression by immunohistochemistry and differential regulation of oncogenic pathways as determined by RNA sequencing. Our work supports a long-distance role of the intestinal microbiota on PDAC progression and opens new research avenues regarding pancreatic carcinogenesis.


Asunto(s)
Carcinogénesis/inmunología , Carcinoma Ductal Pancreático/inmunología , Microbioma Gastrointestinal/inmunología , Interacciones Microbiota-Huesped/inmunología , Neoplasias Pancreáticas/inmunología , Adulto , Anciano , Animales , Antibacterianos/administración & dosificación , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Carcinogénesis/efectos de los fármacos , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/cirugía , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Vida Libre de Gérmenes , Interacciones Microbiota-Huesped/efectos de los fármacos , Humanos , Intestinos/microbiología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Persona de Mediana Edad , Páncreas/microbiología , Páncreas/patología , Páncreas/cirugía , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/cirugía , ARN Ribosómico 16S/aislamiento & purificación , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nutr Neurosci ; 19(8): 337-345, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26086200

RESUMEN

OBJECTIVES: Western-style diets high in saturated fat and refined carbohydrate have been shown to alter gut microbiota as well as being associated with altered behaviour and learning ability. The objective of this study was to determine the effects of short-term intake of a Western-style diet on intestinal cytokine expression, tryptophan metabolism, and levels of neurotransmitters in the brain. METHODS: At 7 weeks of age, 129S1/SvImJ mice were placed on a standard chow or Western-style diet (fat 33%, refined carbohydrates 49%) for 3 weeks. Anxiety-like behaviour was assessed by the latency to step-down test and exploration assessed in a Barnes maze. Neurotransmitter levels in forebrains were analysed by high-pressure liquid chromatography. Liver metabolism was examined by 1H nuclear magnetic resonance (NMR). Cytokine expression in the intestine was measured using MesoScale discovery platform. mRNA levels of tryptophan hydroxylase (Tph) and indoleamine 2,3-dioxygenase (IDO) in the brain and intestine were measured using qPCR. RESULTS: Results showed that mice fed the Western diet displayed reduced exploratory and anxiety-like behaviour. Anxiolytic effects correlated with increased hippocampal brain-derived neurotrophic factor (BDNF) and tryptophan levels. Brain serotonin was not altered. These changes were associated with reduced expression of small intestinal indoleamine 2,3-dioxygenase, a tryptophan-processing enzyme. Western diet-fed mice exhibited low-grade systemic and intestinal inflammation along with altered liver metabolic profiles. DISCUSSION: In conclusion, diets high in fat and refined sugar are associated with increased levels of brain BDNF and tryptophan and decreased exploratory and anxiety-like behaviour. These behavioural changes correlated with altered intestinal tryptophan metabolism and liver metabolic profiles.


Asunto(s)
Ansiedad/etiología , Dieta Occidental/efectos adversos , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo , Enfermedades Metabólicas/etiología , Prosencéfalo/metabolismo , Triptófano/metabolismo , Animales , Ansiedad/inmunología , Ansiedad/metabolismo , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Citocinas/metabolismo , Conducta Exploratoria , Regulación Enzimológica de la Expresión Génica , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Mucosa Intestinal/enzimología , Mucosa Intestinal/inmunología , Intestino Delgado/enzimología , Intestino Delgado/inmunología , Intestino Delgado/metabolismo , Hígado/inmunología , Hígado/metabolismo , Masculino , Enfermedades Metabólicas/inmunología , Enfermedades Metabólicas/metabolismo , Ratones de la Cepa 129 , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/enzimología , Neuronas/inmunología , Neuronas/metabolismo , Prosencéfalo/enzimología , Prosencéfalo/inmunología , Organismos Libres de Patógenos Específicos , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo
5.
Cell Microbiol ; 14(4): 447-59, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22212348

RESUMEN

Both pathogenic and commensal strains of Escherichia coli colonize the human intestinal tract. Pathogenic strains differ only in the expression of virulence factors, many of which comprise a type III secretion system (TTSS). Little is known regarding the effect of E. coli on the intestinal epithelial response to the secretagogues that drive ion secretion, despite its importance in causing clinically significant diarrhoea. Using Ussing chambers to measure electrogenic ion transport of T84 intestinal epithelial cell monolayers, we found that all strains of E. coli tested (pathogenic, commensal, probiotic and lab strain) significantly reduced cAMP-dependent ion secretion after 4-8 h exposure. Enteropathogenic E. coli mutants lacking a functional TTSS caused similar hyposecretion while not causing significant apoptosis (as shown by caspase-3 cleavage) or necrosis (lactate dehydrogenase release), as did the commensal strain F18, indicating that epithelial cell death was not the cause of hyposecretion. Enteropathogenic E. coli and the TTSS mutant significantly reduced cell surface expression of the apical anion channel, cystic fibrosis transmembrane conductance regulator, which is likely the mechanism behind the pathogen-induced hyposecretion. However, F18 did not cause cystic fibrosis transmembrane conductance regulator mislocalization and the commensal-induced mechanism remains unclear.


Asunto(s)
Sistemas de Secreción Bacterianos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Escherichia coli Enteropatógena/patogenicidad , Células Epiteliales/metabolismo , Infecciones por Escherichia coli/metabolismo , Muerte Celular , Línea Celular , Membrana Celular/metabolismo , Colforsina/análogos & derivados , Colforsina/farmacología , AMP Cíclico/metabolismo , Diarrea/microbiología , Escherichia coli Enterohemorrágica/efectos de los fármacos , Escherichia coli Enterohemorrágica/patogenicidad , Escherichia coli Enteropatógena/efectos de los fármacos , Células Epiteliales/microbiología , Infecciones por Escherichia coli/microbiología , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Transporte de Proteínas , Factores de Tiempo , Factores de Virulencia/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo
6.
Science ; 381(6662): eabq5202, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37676943

RESUMEN

Kupffer cells (KCs) are localized in liver sinusoids but extend pseudopods to parenchymal cells to maintain their identity and serve as the body's central bacterial filter. Liver cirrhosis drastically alters vascular architecture, but how KCs adapt is unclear. We used a mouse model of liver fibrosis and human tissue to examine immune adaptation. Fibrosis forced KCs to lose contact with parenchymal cells, down-regulating "KC identity," which rendered them incapable of clearing bacteria. Commensals stimulated the recruitment of monocytes through CD44 to a spatially distinct vascular compartment. There, recruited monocytes formed large aggregates of multinucleated cells (syncytia) that expressed phenotypical KC markers and displayed enhanced bacterial capture ability. Syncytia formed via CD36 and were observed in human cirrhosis as a possible antimicrobial defense that evolved with fibrosis.


Asunto(s)
Infecciones de Transmisión Sanguínea , Células Gigantes , Macrófagos del Hígado , Cirrosis Hepática , Animales , Humanos , Ratones , Células Gigantes/inmunología , Células Gigantes/microbiología , Macrófagos del Hígado/inmunología , Macrófagos del Hígado/microbiología , Cirrosis Hepática/inmunología , Cirrosis Hepática/microbiología , Cirrosis Hepática/patología , Infecciones de Transmisión Sanguínea/inmunología , Modelos Animales de Enfermedad
7.
J Agric Food Chem ; 70(16): 5005-5014, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35420414

RESUMEN

Thearubigins, polymers of tea catechins, account for more than 20% of the black tea polyphenols and have been reported to be the active components in black tea. However, the chemical structures and underlying mechanisms regarding how the thearubigins, being poorly bioavailable, generate in vivo health benefits are still largely unknown. Using germ-free and specific pathogen-free husbandry conditions combined with LC/MS-based nontargeted and targeted metabolomic analyses, we investigated the role of intestinal bacteria in thearubigin metabolism. Theaflavins and theasinensins were identified as the major microbial metabolites of thearubigins, suggesting that these molecules are the building units for the complex thearubigins. To further confirm this, thearubigin depolymerization was done using menthofuran in an acidic condition. Menthofuran-conjugated theaflavins, theasinensins, and catechins as well as their free forms were detected as the major degradation products of thearubigins. This indicated that theaflavins and theasinensins could be further polymerized through B-type proanthocyanidin linkages. Furthermore, four microbial degradation products were able to be detected in urine samples, suggesting that they can be absorbed into the circulatory system. Using the combination of microbial degradation, metabolomics, and chemical degradation, our results demonstrate that thearubigins are the complex polymers of theaflavins, theasinensins, and catechins and can be metabolized by gut microbiota to their corresponding bioactive and bioavailable smaller molecular metabolites.


Asunto(s)
Camellia sinensis , Catequina , Microbioma Gastrointestinal , Antioxidantes/análisis , Camellia sinensis/química , Catequina/química , Espectrometría de Masas/métodos , Polímeros , Polifenoles/química , Té/química
8.
Mucosal Immunol ; 15(6): 1085-1094, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-36065057

RESUMEN

The gut microbiota influences host responses at practically every level, and as research into host-microbe interactions expands, it is not surprising that we are uncovering similar roles for the microbiota at other barrier sites, such as the lung and skin. Using standard laboratory mice to assess host-microbe interactions, or even host intrinsic responses, can be challenging, as slight variations in the microbiota can affect experimental outcomes. When it comes to designing and selecting an appropriate level of microbial diversity and community structure for colonization of our laboratory rodents, we have more choices available to us than ever before. Here we will discuss the different approaches used to modulate microbial complexity that are available to study host-microbe interactions. We will describe how different models have been used to answer distinct biological questions, covering the entire microbial spectrum, from germ-free to wild.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Interacciones Microbiota-Huesped , Membrana Mucosa
9.
Cancers (Basel) ; 14(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35681702

RESUMEN

The gut microbiota plays a role in shaping overall host health and response to several cancer treatments. Factors, such as diet, exercise, and chemotherapy, can alter the gut microbiota. In the present study, the Alberta Cancer Exercise (ACE) program was investigated as a strategy to favorably modify the gut microbiota of breast cancer survivors who had received chemotherapy. Subsequently, the ability of post-exercise gut microbiota, alone or with prebiotic fiber supplementation, to influence breast cancer outcomes was interrogated using fecal microbiota transplant (FMT) in germ-free mice. While cancer survivors experienced little gut microbial change following ACE, in the mice, tumor volume trended consistently lower over time in mice colonized with post-exercise compared to pre-exercise microbiota with significant differences on days 16 and 22. Beta diversity analysis revealed that EO771 breast tumor cell injection and Paclitaxel chemotherapy altered the gut microbial communities in mice. Enrichment of potentially protective microbes was found in post-exercise microbiota groups. Tumors of mice colonized with post-exercise microbiota exhibited more favorable cytokine profiles, including decreased vascular endothelial growth factor (VEGF) levels. Beneficial microbial and molecular outcomes were augmented with prebiotic supplementation. Exercise and prebiotic fiber demonstrated adjuvant action, potentially via an enhanced anti-tumor immune response modulated by advantageous gut microbial shifts.

10.
Mol Nutr Food Res ; 65(4): e2000887, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33381889

RESUMEN

SCOPE: This study is to determine the in vivo efficacy of black tea theaflavin (TF) to detoxify two metabolic toxins, ammonia and methylglyoxal (MGO), in mice METHODS AND RESULTS: Under in vitro conditions, TF is able to react with ammonia, MGO, and hydrogen peroxide to produce its aminated, MGO conjugated, and oxidized products, respectively. In TF-treated mice, the aminated TF, the MGO conjugates of TF and aminated TF, and the oxidized TF are searched using LC-MS/MS. The results provide the first in vivo evidence that the unabsorbed TF is able to trap ammonia to form the aminated TF; furthermore, both TF and the aminated TF have the capacity to trap MGO to generate the corresponding mono-MGO conjugates. Moreover, TF is oxidized to dehydrotheaflavin, which underwent further amination in the gut. By exposing TF to germ-free (GF) mice and conventionalized mice (GF mice colonized with specific-pathogen-free microbiota), the gut microbiota is demonstrated to facilitate the amination and MGO conjugation of TF. CONCLUSION: TF has the capacity to remove the endogenous metabolic toxins through oxidation, amination, and MGO conjugation in the intestinal tract, which can potentially explain why TF still generates in vivo efficacy while showing a poor systematic bioavailability.


Asunto(s)
Amoníaco/farmacocinética , Biflavonoides/farmacología , Catequina/farmacología , Piruvaldehído/farmacología , Té/química , Amoníaco/química , Animales , Biflavonoides/química , Biflavonoides/farmacocinética , Catequina/química , Catequina/farmacocinética , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Ratones Endogámicos , Oxidación-Reducción , Piruvaldehído/química , Organismos Libres de Patógenos Específicos , Toxinas Biológicas/farmacocinética
11.
Curr Opin Microbiol ; 59: 34-41, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32846371

RESUMEN

The intestinal microbiota is comprises a diverse community of micro-organisms that interact with many host processes. Innate immune responses to the gut microbiota are of particular importance as they influence many other downstream responses. This fascinating host-microbe crosstalk is a rapidly expanding field of study; thus, it is critical to ensure reproducibility between studies and applicability to human clinical trials through standardization of experiments. We discuss here recent advances in the field including the spectrum of colonization statuses available, the critical importance of colonization timing, the dynamics of the microbial community, and the required housing of animals, as they pertain to appropriate experimental control and design.


Asunto(s)
Microbioma Gastrointestinal , Inmunidad Innata , Proyectos de Investigación , Animales , Microbioma Gastrointestinal/inmunología , Vivienda para Animales/normas , Microbiota/inmunología , Reproducibilidad de los Resultados , Proyectos de Investigación/normas
12.
Microbiome ; 9(1): 186, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34517928

RESUMEN

BACKGROUND: Studies on the inhibition of inflammation by infection with helminth parasites have, until recently, overlooked a key determinant of health: the gut microbiota. Infection with helminths evokes changes in the composition of their host's microbiota: one outcome of which is an altered metabolome (e.g., levels of short-chain fatty acids (SCFAs)) in the gut lumen. The functional implications of helminth-evoked changes in the enteric microbiome (composition and metabolites) are poorly understood and are explored with respect to controlling enteric inflammation. METHODS: Antibiotic-treated wild-type, germ-free (GF) and free fatty-acid receptor-2 (ffar2) deficient mice were infected with the tapeworm Hymenolepis diminuta, then challenged with DNBS-colitis and disease severity and gut expression of the il-10 receptor-α and SCFA receptors/transporters assessed 3 days later. Gut bacteria composition was assessed by 16 s rRNA sequencing and SCFAs were measured. Other studies assessed the ability of feces or a bacteria-free fecal filtrate from H. diminuta-infected mice to inhibit colitis. RESULTS: Protection against disease by infection with H. diminuta was abrogated by antibiotic treatment and was not observed in GF-mice. Bacterial community profiling revealed an increase in variants belonging to the families Lachnospiraceae and Clostridium cluster XIVa in mice 8 days post-infection with H. diminuta, and the transfer of feces from these mice suppressed DNBS-colitis in GF-mice. Mice treated with a bacteria-free filtrate of feces from H. diminuta-infected mice were protected from DNBS-colitis. Metabolomic analysis revealed increased acetate and butyrate (both or which can reduce colitis) in feces from H. diminuta-infected mice, but not from antibiotic-treated H. diminuta-infected mice. H. diminuta-induced protection against DNBS-colitis was not observed in ffar2-/- mice. Immunologically, anti-il-10 antibodies inhibited the anti-colitic effect of H. diminuta-infection. Analyses of epithelial cell lines, colonoids, and colon segments uncovered reciprocity between butyrate and il-10 in the induction of the il-10-receptor and butyrate transporters. CONCLUSION: Having defined a feed-forward signaling loop between il-10 and butyrate following infection with H. diminuta, this study identifies the gut microbiome as a critical component of the anti-colitic effect of this helminth therapy. We suggest that any intention-to-treat with helminth therapy should be based on the characterization of the patient's immunological and microbiological response to the helminth.


Asunto(s)
Colitis , Helmintos , Himenolepiasis , Animales , Bacterias/genética , Colitis/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C
13.
Am J Physiol Gastrointest Liver Physiol ; 298(6): G807-19, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20299599

RESUMEN

The intestinal tract is a diverse microenvironment where more than 500 species of bacteria thrive. A single layer of epithelium is all that separates these commensal microorganisms and pathogens from the underlying immune cells, and thus epithelial barrier function is a key component in the arsenal of defense mechanisms required to prevent infection and inflammation. The epithelial barrier consists of a dense mucous layer containing secretory IgA and antimicrobial peptides as well as dynamic junctional complexes that regulate permeability between cells. Probiotics are live microorganisms that confer benefit to the host and that have been suggested to ameliorate or prevent diseases including antibiotic-associated diarrhea, irritable bowel syndrome, and inflammatory bowel disease. Probiotics likely function through enhancement of barrier function, immunomodulation, and competitive adherence to the mucus and epithelium. This review summarizes the evidence about effects of the many available probiotics with an emphasis on intestinal barrier function and the mechanisms affected by probiotics.


Asunto(s)
Bacterias/clasificación , Mucosa Intestinal/microbiología , Mucosa Intestinal/fisiología , Probióticos , Animales , Fenómenos Fisiológicos Bacterianos , Humanos
14.
Sci Rep ; 10(1): 6156, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32273533

RESUMEN

Antigen (Ag)-specific tolerization prevents type 1 diabetes (T1D) in non-obese diabetic (NOD) mice but proved less effective in humans. Several auto-Ags are fundamental to disease development, suggesting T1D etiology is heterogeneous and may limit the effectiveness of Ag-specific therapies to distinct disease endotypes. Colonization factor antigen I (CFA/I) fimbriae from Escherichia coli can inhibit autoimmune diseases in murine models by inducing bystander tolerance. To test if Ag-independent stimulation of regulatory T cells (Tregs) can prevent T1D onset, groups of NOD mice were orally treated with Lactococcus lactis (LL) expressing CFA/I. LL-CFA/I treatment beginning at 6 weeks of age reduced disease incidence by 50% (p < 0.05) and increased splenic Tregs producing both IL-10 and IFN-γ 8-fold (p < 0.005) compared to LL-vehicle treated controls. To further describe the role of these Tregs in preventing T1D, protective phenotypes were examined at different time-points. LL-CFA/I treatment suppressed splenic TNF-α+CD8+ T cells 6-fold at 11 weeks (p < 0.005) and promoted a distinct microbiome. At 17 weeks, IFN-γ+CD4+ T cells were suppressed 10-fold (p < 0.005), and at 30 weeks, pancreatic Tbet+CD4+ T cells were suppressed (p < 0.05). These results show oral delivery of modified commensal organisms, such as LL-CFA/I, may be harnessed to restrict Th1 cell-mediated immunity and protect against T1D.


Asunto(s)
Diabetes Mellitus Tipo 1/prevención & control , Proteínas Fimbrias/uso terapéutico , Administración Oral , Animales , Modelos Animales de Enfermedad , Femenino , Proteínas Fimbrias/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Ratones Endogámicos NOD , Linfocitos T Reguladores/fisiología
15.
J Pharmacol Exp Ther ; 329(2): 747-52, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19190238

RESUMEN

Proteinase-activated receptor (PAR)(2) is activated by trypsin-like serine proteinases and has been implicated in intestinal inflammation. However, its role in the regulation of intestinal mucosal function remains unclear. Using the intestinal epithelial cell line, SCBN, we have studied the stimulus-secretion coupling mechanisms of PAR(2)-induced epithelial chloride transport, focusing on cyclooxygenase (COX)-1 and COX-2 activities and prostaglandin (PG) E(2) secretion. SCBN monolayers were grown on Snapwell supports, mounted in modified Ussing chambers, and exposed to the activating peptide, SLIGRL-NH(2) (50 microM), to activate PAR(2). Pretreatment with inhibitors of cytosolic PLA(2) (cPLA(2)) (AACOCF3, arachidonyltrifluoromethyl ketone), COX-1 [SC560, 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole], and COX-2 (celecoxib) resulted in a significant concentration-dependent attenuation of PAR(2)-induced changes in short-circuit current. Immunoblot analysis showed a PAR(2)-induced increase in cPLA(2) phosphorylation that was blocked by the mitogen-activated protein kinase kinase inhibitor, PD98059 [2-(2-amino-3methoxyphenyl)-4H-1benzopyran-4-one, C(16)H(13)NO(3)], and the pan-protein kinase C inhibitor, GFX (bisindolylmaleimide). PAR(2) stimulation also resulted in a large increase in the production of PGE(2) as determined by enzyme-linked immunosorbent assay and was also blocked by PD98059 and GFX. Immunofluorescence and immunoblot analysis determined that EP2 and EP4 are expressed at the basolateral membrane of SCBN cells. Through the use of selective inhibitors (EP2, AH6809 [6-isopropoxy-9-oxoxanthene-2-carboxylic acid]; EP4, GW627368X [N-[2[4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl] acetyl]benzene sulphonamide]), it was found that both EP2 and EP4 were involved in mediating the PAR(2)-induced chloride secretory response. We conclude that basolateral PAR(2) activation induces epithelial chloride secretion that is mediated by cPLA(2), COX-1, COX-2, and the subsequent release of PGE(2). The production of PGE(2) results in an autocrine secretory response that is dependent on basolateral EP2 and EP4 receptors.


Asunto(s)
Ciclooxigenasa 1/fisiología , Ciclooxigenasa 2/fisiología , Dinoprostona/fisiología , Mucosa Intestinal/efectos de los fármacos , Transporte Iónico , Receptor PAR-2/metabolismo , Animales , Línea Celular , Cloro/metabolismo , Ciclooxigenasa 1/biosíntesis , Ciclooxigenasa 2/biosíntesis , Inhibidores de la Ciclooxigenasa/farmacología , Dinoprostona/metabolismo , Perros , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Células Epiteliales/metabolismo , Immunoblotting , Mucosa Intestinal/citología , Mucosa Intestinal/enzimología , Mucosa Intestinal/metabolismo , Transporte Iónico/efectos de los fármacos , Receptores de Prostaglandina E/antagonistas & inhibidores , Subtipo EP2 de Receptores de Prostaglandina E , Subtipo EP4 de Receptores de Prostaglandina E
16.
Free Radic Biol Med ; 131: 332-344, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30578921

RESUMEN

The in vivo mechanism of tea polyphenol-mediated prevention of many chronic diseases is still largely unknown. Studies have shown that accumulation of toxic reactive cellular metabolites, such as ammonia and reactive carbonyl species (RCS), is one of the causing factors to the development of many chronic diseases. In this study, we investigated the in vivo interaction between (-)-epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in tea leaves, and ammonia and RCS. We found that EGCG could be oxidized to EGCG quinone in mice, and then rapidly react with ammonia to generate the aminated EGCG metabolite, 4'-NH2-EGCG. Both EGCG and its aminated metabolite could further scavenge RCS, such as methylglyoxal (MGO), malondialdehyde (MDA), and trans-4-hydroxy-2-nonenal (4-HNE), to produce the RCS conjugates of EGCG and the aminated EGCG. Both the aminated and the RCS conjugated metabolites of EGCG were detected in human after drinking four cups of green tea per day. By comparing the levels of the aminated and the RCS conjugated metabolites in EGCG exposed germ-free (GF) mice and specific-pathogen-free (SPF) mice, we demonstrated that gut microbiota facilitate the formation of the aminated metabolite of EGCG, the RCS conjugates of EGCG, and the RCS conjugates of the aminated EGCG. By comparing the trapping capacities of EGCG and its aminated metabolite under aerobic and anaerobic conditions, we found that oxygen is not essential for the trapping of reactive species by EGCG and 4'-NH2-EGCG suggesting that EGCG and its aminated metabolite could scavenge RCS in the GI track and in the circulation system. Altogether, this study provides in vivo evidences that EGCG has the capacity to scavenge toxic reactive metabolic wastes. This finding opens a new window to understand the underlying mechanisms by which drinking tea could prevent the development of chronic diseases.


Asunto(s)
Aldehídos/metabolismo , Catequina/análogos & derivados , Depuradores de Radicales Libres/metabolismo , Malondialdehído/metabolismo , Piruvaldehído/metabolismo , Té/metabolismo , Aminación , Amoníaco/metabolismo , Animales , Catequina/metabolismo , Microbioma Gastrointestinal/fisiología , Vida Libre de Gérmenes , Células HCT116 , Células HT29 , Humanos , Ratones , Oxidación-Reducción , Quinonas/metabolismo , Desintoxicación por Sorción/métodos
17.
Mucosal Immunol ; 11(5): 1329-1341, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29875400

RESUMEN

Intestinal epithelial Na+/H+ exchange facilitated by the apical NHE3 (Slc9a3) is a highly regulated process inhibited by intestinal pathogens and in inflammatory bowel diseases. NHE3-/- mice develop spontaneous, bacterially mediated colitis, and IBD-like dysbiosis. Disruption of epithelial Na+/H+ exchange in IBD may thus represent a host response contributing to the altered gut microbial ecology, and may play a pivotal role in modulating the severity of inflammation in a microbiome-dependent manner. To test whether microbiome fostered in an NHE3-deficient environment is able to drive mucosal immune responses affecting the onset or severity of colitis, we performed a series of cohousing experiments and fecal microbiome transplants into germ-free Rag-deficient or IL-10-/- mice. We determined that in the settings where the microbiome of NHE3-deficient mice was stably engrafted in the recipient host, it was able accelerate the onset and amplify severity of experimental colitis. NHE3-deficiency was characterized by the reduction in pH-sensitive butyrate-producing Firmicutes families Lachnospiraceae and Ruminococcaceae (Clostridia clusters IV and XIVa), with an expansion of inflammation-associated Bacteroidaceae. We conclude that the microbiome fostered by impaired epithelial Na+/H+ exchange enhances the onset and severity of colitis through disruption of the gut microbial ecology.


Asunto(s)
Colitis/metabolismo , Disbiosis/metabolismo , Microbioma Gastrointestinal/inmunología , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Bacteroidaceae/inmunología , Disbiosis/inmunología , Disbiosis/microbiología , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Femenino , Firmicutes/inmunología , Vida Libre de Gérmenes , Concentración de Iones de Hidrógeno , Inmunidad/inmunología , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/microbiología , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/microbiología , Interleucina-10/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Intercambiador 3 de Sodio-Hidrógeno/metabolismo
18.
JCI Insight ; 2(11)2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28570279

RESUMEN

Intestinal tuft cells are a rare, poorly understood cell type recently shown to be a critical mediator of type 2 immune response to helminth infection. Here, we present advances in segmentation algorithms and analytical tools for multiplex immunofluorescence (MxIF), a platform that enables iterative staining of over 60 antibodies on a single tissue section. These refinements have enabled a comprehensive analysis of tuft cell number, distribution, and protein expression profiles as a function of anatomical location and physiological perturbations. Based solely on DCLK1 immunoreactivity, tuft cell numbers were similar throughout the mouse small intestine and colon. However, multiple subsets of tuft cells were uncovered when protein coexpression signatures were examined, including two new intestinal tuft cell markers, Hopx and EGFR phosphotyrosine 1068. Furthermore, we identified dynamic changes in tuft cell number, composition, and protein expression associated with fasting and refeeding and after introduction of microbiota to germ-free mice. These studies provide a foundational framework for future studies of intestinal tuft cell regulation and demonstrate the utility of our improved MxIF computational methods and workflow for understanding cellular heterogeneity in complex tissues in normal and disease states.

19.
Cell Mol Gastroenterol Hepatol ; 1(1): 28-40, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25729763

RESUMEN

The concept that the intestinal microbiota modulates numerous physiological processes including immune development and function, nutrition and metabolism as well as pathogen exclusion is relatively well established in the scientific community. The molecular mechanisms driving these various effects and the events leading to the establishment of a "healthy" microbiome are slowly emerging. The objective of this review is to bring into focus important aspects of microbial/host interactions in the intestine and to discuss key molecular mechanisms controlling health and disease states. We will discuss recent evidence on how microbes interact with the host and one another and their impact on intestinal homeostasis.

20.
Cell Metab ; 20(6): 937-8, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25470545

RESUMEN

Obesity and the associated state of subchronic inflammation are risk factors for numerous pathologies, including carcinogenesis. Recently, Schulz et al. (2014) demonstrated that high-fat diet-induced intestinal dysbiosis promotes cancer development in K-ras(G12Dint) mice without inducing obesity or mucosal inflammation, positioning microbial activities as a central component of diet-induced carcinogenesis.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/efectos adversos , Disbiosis/inducido químicamente , Disbiosis/microbiología , Neoplasias Intestinales/microbiología , Obesidad , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA