Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Genes Dev ; 28(2): 198-210, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24449272

RESUMEN

Despite having high-resolution structures for eukaryotic large ribosomal subunits, it remained unclear how these ribonucleoprotein complexes are constructed in living cells. Nevertheless, knowing where ribosomal proteins interact with ribosomal RNA (rRNA) provides a strategic platform to investigate the connection between spatial and temporal aspects of 60S subunit biogenesis. We previously found that the function of individual yeast large subunit ribosomal proteins (RPLs) in precursor rRNA (pre-rRNA) processing correlates with their location in the structure of mature 60S subunits. This observation suggested that there is an order by which 60S subunits are formed. To test this model, we used proteomic approaches to assay changes in the levels of ribosomal proteins and assembly factors in preribosomes when RPLs functioning in early, middle, and late steps of pre-60S assembly are depleted. Our results demonstrate that structural domains of eukaryotic 60S ribosomal subunits are formed in a hierarchical fashion. Assembly begins at the convex solvent side, followed by the polypeptide exit tunnel, the intersubunit side, and finally the central protuberance. This model provides an initial paradigm for the sequential assembly of eukaryotic 60S subunits. Our results reveal striking differences and similarities between assembly of bacterial and eukaryotic large ribosomal subunits, providing insights into how these RNA-protein particles evolved.


Asunto(s)
Modelos Moleculares , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína/fisiología , Subunidades Ribosómicas Grandes de Eucariotas/química , Saccharomyces cerevisiae/química
2.
Nucleic Acids Res ; 46(6): 3140-3151, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29294095

RESUMEN

The formation of ribosomal subunits is a highly dynamic process that is initiated in the nucleus and involves more than 200 trans-acting factors, some of which accompany the pre-ribosomes into the cytoplasm and have to be recycled into the nucleus. The inhibitor diazaborine prevents cytoplasmic release and recycling of shuttling pre-60S maturation factors by inhibiting the AAA-ATPase Drg1. The failure to recycle these proteins results in their depletion in the nucleolus and halts the pathway at an early maturation step. Here, we made use of the fast onset of inhibition by diazaborine to chase the maturation path in real-time from 27SA2 pre-rRNA containing pre-ribosomes localized in the nucleolus up to nearly mature 60S subunits shortly after their export into the cytoplasm. This allows for the first time to put protein assembly and disassembly reactions as well as pre-rRNA processing into a chronological context unraveling temporal and functional linkages during ribosome maturation.


Asunto(s)
Nucléolo Celular/metabolismo , Citoplasma/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Transporte Biológico/efectos de los fármacos , Compuestos de Boro/farmacología , Fluorescencia , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagen de Lapso de Tiempo/métodos
3.
J Proteome Res ; 17(1): 618-634, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29182335

RESUMEN

The pathophysiology underlying the autoimmune disease type 1 diabetes (T1D) is poorly understood. Obtaining an accurate proteomic profile of the T helper cell population is essential for understanding the pathogenesis of T1D. Here, we performed in-depth proteomic profiling of peripheral CD4+ T cells in a pediatric cohort to identify cellular signatures associated with the onset of T1D. Using only 250 000 CD4+ T cells per patient, isolated from biobanked PBMC samples, we identified nearly 6000 proteins using deep-proteome profiling with LC-MS/MS data-independent acquisition. Our analysis revealed an inflammatory signature in patients with T1D; this signature is characterized by circulating mediators of neutrophils, platelets, and the complement system. This signature likely reflects the inflammatory extracellular milieu, which suggests that activation of the innate immune system plays an important role in disease onset. Our results emphasize the potential value of using high-resolution LC-MS/MS to investigate limited quantities of biobanked samples to identify disease-relevant proteomic patterns. Proteomic profiles of 114 individuals have been deposited in a comprehensive portable repository serving as a unique resource for CD4+ T cell expression in the context of both health and T1D disease.


Asunto(s)
Linfocitos T CD4-Positivos/química , Diabetes Mellitus Tipo 1/inmunología , Proteómica , Adolescente , Niño , Preescolar , Cromatografía Líquida de Alta Presión , Diabetes Mellitus Tipo 1/patología , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata , Inflamación , Pediatría , Espectrometría de Masas en Tándem
4.
Nucleic Acids Res ; 41(2): 1191-210, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23209026

RESUMEN

Eukaryotic ribosome biogenesis requires more than 150 auxiliary proteins, which transiently interact with pre-ribosomal particles. Previous studies suggest that several of these biogenesis factors function together as modules. Using a heterologous expression system, we show that the large ribosomal subunit (LSU) biogenesis factor Noc1p of Saccharomyces cerevisiae can simultaneously interact with the LSU biogenesis factor Noc2p and Rrp5p, a factor required for biogenesis of the large and the small ribosomal subunit. Proteome analysis of RNA polymerase-I-associated chromatin and chromatin immunopurification experiments indicated that all members of this protein module and a specific set of LSU biogenesis factors are co-transcriptionally recruited to nascent ribosomal RNA (rRNA) precursors in yeast cells. Further ex vivo analyses showed that all module members predominantly interact with early pre-LSU particles after the initial pre-rRNA processing events have occurred. In yeast strains depleted of Noc1p, Noc2p or Rrp5p, levels of the major LSU pre-rRNAs decreased and the respective other module members were associated with accumulating aberrant rRNA fragments. Therefore, we conclude that the module exhibits several binding interfaces with pre-ribosomes. Taken together, our results suggest a co- and post-transcriptional role of the yeast Rrp5p-Noc1p-Noc2p module in the structural organization of early LSU precursors protecting them from non-productive RNase activity.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Sitios de Unión , Línea Celular , Proteínas Nucleares/química , Proteínas de Unión al ARN/química , Proteínas Recombinantes/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Transcripción Genética
5.
RNA ; 18(10): 1805-22, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22893726

RESUMEN

Ribosome biogenesis is a complex multistep process that involves alternating steps of folding and processing of pre-rRNAs in concert with assembly of ribosomal proteins. Recently, there has been increased interest in the roles of ribosomal proteins in eukaryotic ribosome biogenesis in vivo, focusing primarily on their function in pre-rRNA processing. However, much less is known about participation of ribosomal proteins in the formation and rearrangement of preribosomal particles as they mature to functional subunits. We have studied ribosomal proteins L7 and L8, which are required for the same early steps in pre-rRNA processing during assembly of 60S subunits but are located in different domains within ribosomes. Depletion of either leads to defects in processing of 27SA(3) to 27SB pre-rRNA and turnover of pre-rRNAs destined for large ribosomal subunits. A specific subset of proteins is diminished from these residual assembly intermediates: six assembly factors required for processing of 27SA(3) pre-rRNA and four ribosomal proteins bound to domain I of 25S and 5.8S rRNAs surrounding the polypeptide exit tunnel. In addition, specific sets of ribosomal proteins are affected in each mutant: In the absence of L7, proteins bound to domain II, L6, L14, L20, and L33 are greatly diminished, while proteins L13, L15, and L36 that bind to domain I are affected in the absence of L8. Thus, L7 and L8 might establish RNP structures within assembling ribosomes necessary for the stable association and function of the A(3) assembly factors and for proper assembly of the neighborhoods containing domains I and II.


Asunto(s)
ARN Ribosómico/metabolismo , Proteínas Ribosómicas/fisiología , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Análisis por Micromatrices , Organismos Modificados Genéticamente , Dominios y Motivos de Interacción de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas/fisiología , Multimerización de Proteína/genética , Multimerización de Proteína/fisiología , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN/genética , Procesamiento Postranscripcional del ARN/fisiología , ARN Ribosómico/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Levaduras/genética , Levaduras/metabolismo
6.
Methods Mol Biol ; 2533: 127-145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35796986

RESUMEN

Micrococcal nuclease (MNase) originating from Staphylococcus aureus is a calcium dependent ribo- and desoxyribonuclease which has endo- and exonucleolytic activity of low sequence preference. MNase is widely used to analyze nucleosome positions in chromatin by probing the enzyme's DNA accessibility in limited digestion reactions. Probing reactions can be performed in a global way by addition of exogenous MNase , or locally by "chromatin endogenous cleavage " (ChEC ) reactions using MNase fusion proteins . The latter approach has recently been adopted for the analysis of local RNA environments of MNase fusion proteins which are incorporated in vivo at specific sites of ribonucleoprotein (RNP ) complexes. In this case, ex vivo activation of MNase by addition of calcium leads to RNA cleavages in proximity to the tethered anchor protein thus providing information about the folding state of its RNA environment.Here, we describe a set of plasmids that can be used as template for PCR-based MNase tagging of genes by homologous recombination in S. cerevisiae . The templates enable both N- and C-terminal tagging with MNase in combination with linker regions of different lengths and properties. In addition, an affinity tag is included in the recombination cassettes which can be used for purification of the particle of interest before or after induction of MNase cleavages in the surrounding RNA or DNA. A step-by-step protocol is provided for tagging of a gene of interest, followed by affinity purification of the resulting fusion protein together with associated RNA and subsequent induction of local MNase cleavages.


Asunto(s)
Calcio , Saccharomyces cerevisiae , Calcio/metabolismo , Cromatina/metabolismo , ADN/genética , Recombinación Homóloga , Nucleasa Microcócica/metabolismo , Nucleosomas/metabolismo , ARN/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Noncoding RNA ; 8(1)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35076539

RESUMEN

The synthesis of ribosomes involves the correct folding of the pre-ribosomal RNA within pre-ribosomal particles. The first ribosomal precursor or small subunit processome assembles stepwise on the nascent transcript of the 35S gene. At the earlier stages, the pre-ribosomal particles undergo structural and compositional changes, resulting in heterogeneous populations of particles with highly flexible regions. Structural probing methods are suitable for resolving these structures and providing evidence about the architecture of ribonucleoprotein complexes. Our approach used MNase tethered to the assembly factors Nan1/Utp17, Utp10, Utp12, and Utp13, which among other factors, initiate the formation of the small subunit processome. Our results provide dynamic information about the folding of the pre-ribosomes by elucidating the relative organization of the 5'ETS and ITS1 regions within the 35S and U3 snoRNA around the C-terminal domains of Nan1/Utp17, Utp10, Utp12, and Utp13.

8.
Nat Commun ; 12(1): 5399, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518535

RESUMEN

Mass spectrometry (MS)-based ubiquitinomics provides system-level understanding of ubiquitin signaling. Here we present a scalable workflow for deep and precise in vivo ubiquitinome profiling, coupling an improved sample preparation protocol with data-independent acquisition (DIA)-MS and neural network-based data processing specifically optimized for ubiquitinomics. Compared to data-dependent acquisition (DDA), our method more than triples identification numbers to 70,000 ubiquitinated peptides in single MS runs, while significantly improving robustness and quantification precision. Upon inhibition of the oncology target USP7, we simultaneously record ubiquitination and consequent changes in abundance of more than 8,000 proteins at high temporal resolution. While ubiquitination of hundreds of proteins increases within minutes of USP7 inhibition, we find that only a small fraction of those are ever degraded, thereby dissecting the scope of USP7 action. Our method enables rapid mode-of-action profiling of candidate drugs targeting DUBs or ubiquitin ligases at high precision and throughput.


Asunto(s)
Redes Neurales de la Computación , Proteoma/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Peptidasa Específica de Ubiquitina 7/metabolismo , Ubiquitinación , Línea Celular Tumoral , Células HCT116 , Humanos , Células Jurkat , Transducción de Señal , Especificidad por Sustrato , Factores de Tiempo , Ubiquitina/metabolismo
9.
Nat Biotechnol ; 39(12): 1563-1573, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34239088

RESUMEN

MaxDIA is a software platform for analyzing data-independent acquisition (DIA) proteomics data within the MaxQuant software environment. Using spectral libraries, MaxDIA achieves deep proteome coverage with substantially better coefficients of variation in protein quantification than other software. MaxDIA is equipped with accurate false discovery rate (FDR) estimates on both library-to-DIA match and protein levels, including when using whole-proteome predicted spectral libraries. This is the foundation of discovery DIA-hypothesis-free analysis of DIA samples without library and with reliable FDR control. MaxDIA performs three- or four-dimensional feature detection of fragment data, and scoring of matches is augmented by machine learning on the features of an identification. MaxDIA's bootstrap DIA workflow performs multiple rounds of matching with increasing quality of recalibration and stringency of matching to the library. Combining MaxDIA with two new technologies-BoxCar acquisition and trapped ion mobility spectrometry-both lead to deep and accurate proteome quantification.


Asunto(s)
Proteoma , Proteómica , Biblioteca de Péptidos , Proteoma/análisis , Proteómica/métodos , Programas Informáticos
10.
PLoS One ; 15(9): e0238533, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32966280

RESUMEN

In this proof-of-concept study, we tested whether placebo effects can be monitored and predicted by plasma proteins. In a randomized controlled design, 90 participants were exposed to a nauseating stimulus on two separate days and were randomly allocated to placebo treatment or no treatment on the second day. Significant placebo effects on nausea, motion sickness, and (in females) gastric activity could be verified. Using label-free tandem mass spectrometry, 74 differentially regulated proteins were identified as correlates of the placebo effect. Gene ontology (GO) enrichment analyses identified acute-phase proteins and microinflammatory proteins to be involved, and the identified GO signatures predicted day-adjusted scores of nausea indices in the placebo group. We also performed GO enrichment analyses of specific plasma proteins predictable by the experimental factors or their interactions and identified 'grooming behavior' as a prominent hit. Finally, Receiver Operator Characteristics (ROC) allowed to identify plasma proteins differentiating placebo responders from non-responders, comprising immunoglobulins and proteins involved in oxidation reduction processes and complement activation. Plasma proteomics is a promising tool to identify molecular correlates and predictors of the placebo effect in humans.


Asunto(s)
Proteínas Sanguíneas/análisis , Náusea/sangre , Náusea/terapia , Efecto Placebo , Terapia por Acupuntura , Adulto , Terapia por Estimulación Eléctrica , Femenino , Humanos , Masculino , Mareo por Movimiento/sangre , Mareo por Movimiento/terapia , Proteómica , Adulto Joven
11.
PLoS One ; 11(1): e0146887, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26760037

RESUMEN

Epithelial-to-mesenchymal transition (EMT) of retinal pigment epithelial cells is a crucial event in the onset of proliferative vitreoretinopathy (PVR), the most common reason for treatment failure in retinal detachment surgery. We studied alterations in the cell surface glycan expression profile upon EMT of RPE cells and focused on its relevance for the interaction with galectin-3 (Gal-3), a carbohydrate binding protein, which can inhibit attachment and spreading of human RPE cells in a dose- and carbohydrate-dependent manner, and thus bares the potential to counteract PVR-associated cellular events. Lectin blot analysis revealed that EMT of RPE cells in vitro confers a glycomic shift towards an abundance of Thomsen-Friedenreich antigen, poly-N-acetyllactosamine chains, and complex-type branched N-glycans. Using inhibitors of glycosylation we found that both, binding of Gal-3 to the RPE cell surface and Gal-3-mediated inhibition of RPE attachment and spreading, strongly depend on the interaction of Gal-3 with tri- or tetra-antennary complex type N-glycans and sialylation of glycans but not on complex-type O-glycans. Importantly, we found that ß1,6 N-acetylglucosaminyltransferase V (Mgat5), the key enzyme catalyzing the synthesis of tetra- or tri-antennary complex type N-glycans, is increased upon EMT of RPE cells. Silencing of Mgat5 by siRNA and CRISPR-Cas9 genome editing resulted in reduced Gal-3 binding. We conclude from these data that binding of recombinant Gal-3 to the RPE cell surface and inhibitory effects on RPE attachment and spreading largely dependent on interaction with Mgat5 modified N-glycans, which are more abundant on dedifferentiated than on the healthy, native RPE cells. Based on these findings we hypothesize that EMT of RPE cells in vitro confers glycomic changes, which account for high affinity binding of recombinant Gal-3, particularly to the cell surface of myofibroblastic RPE. From a future perspective recombinant Gal-3 may disclose a therapeutic option allowing for selectively targeting RPE cells with pathogenic relevance for development of PVR.


Asunto(s)
Transición Epitelial-Mesenquimal , Galectina 3/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Epitelio Pigmentado de la Retina/citología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Sistemas CRISPR-Cas , Membrana Celular/metabolismo , Movimiento Celular , Proliferación Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Glicómica , Glicosilación , Células HEK293 , Humanos , Persona de Mediana Edad , Polisacáridos/metabolismo , Unión Proteica , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Porcinos , Vitreorretinopatía Proliferativa/metabolismo , Adulto Joven
12.
PLoS One ; 10(12): e0143768, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26642313

RESUMEN

Cellular production of ribosomes involves the formation of highly defined interactions between ribosomal proteins (r-proteins) and ribosomal RNAs (rRNAs). Moreover in eukaryotic cells, efficient ribosome maturation requires the transient association of a large number of ribosome biogenesis factors (RBFs) with newly forming ribosomal subunits. Here, we investigated how r-protein assembly events in the large ribosomal subunit (LSU) rRNA domain II are coordinated with each other and with the association of RBFs in early LSU precursors of the yeast Saccharomyces cerevisiae. Specific effects on the pre-ribosomal association of RBFs could be observed in yeast mutants blocked in LSU rRNA domain II assembly. Moreover, formation of a cluster of r-proteins was identified as a downstream event in LSU rRNA domain II assembly. We analyzed in more detail the functional relevance of eukaryote specific bridges established by this r-protein cluster between LSU rRNA domain II and VI and discuss how they can support the stabilization and efficient processing of yeast early LSU precursor RNAs.


Asunto(s)
Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Procesamiento Postranscripcional del ARN , ARN de Hongos/metabolismo , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes de Eucariotas/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
13.
PLoS One ; 9(12): e114898, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25501974

RESUMEN

Eukaryotic ribosome biogenesis is a multistep process involving more than 150 biogenesis factors, which interact transiently with pre-ribosomal particles to promote their maturation. Some of these auxiliary proteins have been isolated in complexes found separate from the ribosomal environment. Among them, are 3 large UTP subcomplexes containing 6 or 7 protein subunits which are involved in the early steps of ribosome biogenesis. The composition of the UTP subcomplexes and the network of binary interactions between protein subunits have been analyzed previously. To obtain further insights into the structural and biochemical properties of UTP subcomplexes, we established a heterologous expression system to allow reconstitution of the yeast tUTP/UTP A and UTP B subcomplexes from their candidate subunits. The results of a series of reconstitution experiments involving different combinations of protein subunits are in good agreement with most of the previously observed binary interactions. Moreover, in combination with additional biochemical analyses, several stable building blocks of the UTP subcomplexes were identified. Based on these findings, we present a refined model of the tUTP/UTP A and UTP B architecture.


Asunto(s)
Complejos Multiproteicos/metabolismo , Biogénesis de Organelos , Ribonucleoproteínas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Uridina Trifosfato/metabolismo , Levaduras/citología , Animales , Western Blotting , Células Cultivadas , Técnicas In Vitro , Insectos , Complejos Multiproteicos/genética , Oligonucleótidos , Ribonucleoproteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Espectrometría de Masas en Tándem , Uridina Trifosfato/genética , Levaduras/metabolismo
14.
PLoS One ; 8(7): e68412, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874617

RESUMEN

During the assembly process of ribosomal subunits, their structural components, the ribosomal RNAs (rRNAs) and the ribosomal proteins (r-proteins) have to join together in a highly dynamic and defined manner to enable the efficient formation of functional ribosomes. In this work, the assembly of large ribosomal subunit (LSU) r-proteins from the eukaryote S. cerevisiae was systematically investigated. Groups of LSU r-proteins with specific assembly characteristics were detected by comparing the protein composition of affinity purified early, middle, late or mature LSU (precursor) particles by semi-quantitative mass spectrometry. The impact of yeast LSU r-proteins rpL25, rpL2, rpL43, and rpL21 on the composition of intermediate to late nuclear LSU precursors was analyzed in more detail. Effects of these proteins on the assembly states of other r-proteins and on the transient LSU precursor association of several ribosome biogenesis factors, including Nog2, Rsa4 and Nop53, are discussed.


Asunto(s)
Multimerización de Proteína/fisiología , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatografía de Afinidad , Espectrometría de Masas , Proteoma/análisis , Proteómica/métodos , Precursores del ARN/análisis , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes/química , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
PLoS One ; 7(3): e32552, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22431976

RESUMEN

Early steps of eukaryotic ribosome biogenesis require a large set of ribosome biogenesis factors which transiently interact with nascent rRNA precursors (pre-rRNA). Most likely, concomitant with that initial contacts between ribosomal proteins (r-proteins) and ribosome precursors (pre-ribosomes) are established which are converted into robust interactions between pre-rRNA and r-proteins during the course of ribosome maturation. Here we analysed the interrelationship between r-protein assembly events and the transient interactions of ribosome biogenesis factors with early pre-ribosomal intermediates termed 90S pre-ribosomes or small ribosomal subunit (SSU) processome in yeast cells. We observed that components of the SSU processome UTP-A and UTP-B sub-modules were recruited to early pre-ribosomes independently of all tested r-proteins. On the other hand, groups of SSU processome components were identified whose association with early pre-ribosomes was affected by specific r-protein assembly events in the head-platform interface of the SSU. One of these components, Noc4p, appeared to be itself required for robust incorporation of r-proteins into the SSU head domain. Altogether, the data reveal an emerging network of specific interrelationships between local r-protein assembly events and the functional interactions of SSU processome components with early pre-ribosomes. They point towards some of these components being transient primary pre-rRNA in vivo binders and towards a role for others in coordinating the assembly of major SSU domains.


Asunto(s)
Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Mutación/genética , Unión Proteica , Precursores del ARN/metabolismo , ARN Ribosómico 16S/metabolismo , ARN Ribosómico 18S/metabolismo , Proteínas Ribosómicas/aislamiento & purificación , Subunidades Ribosómicas Pequeñas , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
16.
PLoS One ; 7(8): e42449, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22876323

RESUMEN

Analyses of the conformational dynamics of the numerous cellular ribonucleoprotein particles (RNP) significantly contribute to the understanding of their modes of action. Here, we tested whether ribonuclease fusion proteins incorporated into RNPs can be used as molecular probes to characterize the local RNA environment of these proteins. Fusion proteins of micrococcal nuclease (MNase) with ribosomal proteins were expressed in S. cerevisae to produce in vivo recombinant ribosomes which have a ribonuclease tethered to specific sites. Activation of the MNase activity by addition of calcium led to specific rRNA cleavage events in proximity to the ribosomal binding sites of the fusion proteins. The dimensions of the RNP environment which could be probed by this approach varied with the size of the linker sequence between MNase and the fused protein. Advantages and disadvantages of the use of MNase fusion proteins for local tertiary structure probing of RNPs as well as alternative applications for this type of approach in RNP research are discussed.


Asunto(s)
Proteínas Recombinantes de Fusión/química , Ribonucleoproteínas/química , Nucleasa Microcócica/genética , Nucleasa Microcócica/metabolismo , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , División del ARN , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA