Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurogenetics ; 25(3): 263-275, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38809364

RESUMEN

Multiple sclerosis (MS), an intricate neurological disorder, continues to challenge our understanding of the pivotal interplay between the immune system and the central nervous system (CNS). This condition arises from the immune system's misdirected attack on nerve fiber protection, known as myelin sheath, alongside nerve fibers themselves. This enigmatic condition, characterized by demyelination and varied clinical manifestations, prompts exploration into its multifaceted etiology and potential therapeutic avenues. Research has revealed a potential connection between Epstein Barr virus (EBV), specifically Epstein Barr Nuclear Antigen 1 (EBNA-1), and MS. The immune response to EBNA-1 antigen triggers the production of anti-EBNA-1 molecules, including IgG that identify a similar amino acid sequence to EBNA-1 in myelin, inadvertently targeting myelin sheath and contributing to MS progression. Currently, no treatment exists for EBNA-1-induced MS apart from symptom management. Addressing this, a novel potential therapeutic avenue utilizing small interference RNAs (siRNA) has been designed. By targeting the conserved EBNA-1 gene sequences in EBV types 1 and 2, five potential siRNAs were identified in our analysis. Thorough evaluations encompassing off-target binding, thermodynamics and secondary structure elucidation, efficacy prediction, siRNA-mRNA sequence binding affinity exploration, melting temperature, and docking of siRNAs with human argonaute protein 2 (AGO2) were conducted to elucidate the siRNAs efficiency. These designed siRNA molecules harnessed promising silencing activity in the EBNA-1 gene encoding the EBNA-1 antigen protein and thus have the potential to mitigate the severity of this dangerous virus.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Antígenos Nucleares del Virus de Epstein-Barr , Herpesvirus Humano 4 , Esclerosis Múltiple , ARN Interferente Pequeño , Esclerosis Múltiple/terapia , Esclerosis Múltiple/genética , Humanos , Herpesvirus Humano 4/genética , Antígenos Nucleares del Virus de Epstein-Barr/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/terapia
2.
Front Oncol ; 14: 1325614, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450190

RESUMEN

This review focuses on the critical role of epigenetic modifications in solid tumor metastasis, particularly in people of African ancestry. Epigenetic alterations, such as DNA methylation, histone modifications, alterations in non-coding RNAs, and mRNA methylation, significantly influence gene expression, contributing to cancer development and progression. Despite the primary focus on populations of European, American, and Asian descent in most cancer research, this work emphasizes the importance of studying the unique genetic and epigenetic landscapes of African populations for a more inclusive approach in understanding and treating cancer. Insights from this review have the potential to pave the way for the development of effective, tailored treatments, and provide a richer resource for understanding cancer progression and metastasis. Specific focus was placed on the role of DNA methylation, histone modifications, non-coding RNAs, and mRNA methylation in solid tumor metastasis, including how these modifications contribute to the regulation of tumor suppressor genes and oncogenes, influence cellular pathways and signaling, and interact with the immune system. Moreover, this review elaborates on the development of epigenetic-targeted therapeutic strategies and the current advances in this field, highlighting the promising applications of these therapies in improving outcomes for African ancestry populations disproportionately affected by certain types of cancer. Nevertheless, this work acknowledges the challenges that lie ahead, particularly the under-representation of African populations in cancer genomic and epigenomic studies and the technical complications associated with detecting subtle epigenetic modifications. Emphasis is placed on the necessity for more inclusive research practices, the development of more robust and sensitive methods for detecting and interpreting epigenetic changes, and the understanding of the interplay between genetic and epigenetic variations. The review concludes with an optimistic outlook on the future of epigenetic research in People of African ancestry, urging the concerted efforts of researchers, clinicians, funding agencies, and policymakers to extend the benefits of this research to all populations.

3.
In Silico Pharmacol ; 12(1): 4, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38130691

RESUMEN

Malaria remains a significant public health challenge, with resistance to available drugs necessitating the development of novel therapies targeting invasion-dependent proteins. Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK-1) is essential for host erythrocyte invasion and parasite asexual development. This study screened a library of 490 compounds using computational methods to identify potential PfCDPK-1 inhibitors. Three compounds; 17-hydroxyazadiradione, Picracin, and Epicatechin-gallate derived from known antimalarial botanicals, showed potent inhibitory effects on PfCDPK-1. These compounds exhibited better binding affinities (-8.8, -9.1, -9.3 kCal/mol respectively), pharmacokinetics, and physicochemical properties than the purported inhibitory standard of PfCDPK-1, Purfalcamine. Molecular dynamics simulations (50 ns) and molecular mechanics analyses confirmed the stability and binding rigidity of these compounds at the active pocket of PfCDPK-1. The results suggest that these compounds are promising pharmacological targets with potential therapeutic effects for malaria treatment/management without undesirable side effects. Therefore, this study provides new insights into the development of effective antimalarial agents targeting invasion-dependent proteins, which could help combat the global malaria burden. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-023-00175-z.

4.
Sci Rep ; 14(1): 16798, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039173

RESUMEN

The available Epstein Barr virus vaccine has tirelessly harnessed the gp350 glycoprotein as its target epitope, but the result has not been preventive. Right here, we designed a global multi-epitope vaccine for EBV; with special attention to making sure all strains and preventive antigens are covered. Using a robust computational vaccine design approach, our proposed vaccine is armed with 6-16 mers linear B-cell epitopes, 4-9 mer CTL epitopes, and 8-15 mer HTL epitopes which are verified to induce interleukin 4, 10 & IFN-gamma. We employed deep computational mining coupled with expert intelligence in designing the vaccine, using human Beta defensin-3-which has been reported to induce the same TLRs as EBV-as the adjuvant. The tendency of the vaccine to cause autoimmune disorder is quenched by the assurance that the construct contains no EBNA-1 homolog. The protein vaccine construct exhibited excellent physicochemical attributes such as Aliphatic index 59.55 and GRAVY - 0.710; and a ProsaWeb Z score of - 3.04. Further computational analysis revealed the vaccine docked favorably with EBV indicted TLR 1, 2, 4 & 9 with satisfactory interaction patterns. With global coverage of 85.75% and the stable molecular dynamics result obtained for the best two interactions, we are optimistic that our nontoxic, non-allergenic multi-epitope vaccine will help to ameliorate the EBV-associated diseases-which include various malignancies, tumors, and cancers-preventively.


Asunto(s)
Proteínas de la Cápside , Herpesvirus Humano 4 , Herpesvirus Humano 4/inmunología , Humanos , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/química , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/prevención & control , Epítopos de Linfocito B/inmunología , Biología Computacional/métodos , Epítopos de Linfocito T/inmunología , Vacunas Virales/inmunología , Antígenos Virales/inmunología , Antígenos Virales/química , Modelos Moleculares , Simulación del Acoplamiento Molecular
5.
In Silico Pharmacol ; 12(2): 68, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070665

RESUMEN

Epstein-Barr Virus (EBV), structurally similar to other herpes viruses, possess significant global health challenges as it causes infectious mononucleosis and is also associated with various cancers. Due to this widespread impact, an effective messenger RNA (mRNA) vaccine is paramount to help curb its spread, further underscoring the need for its development. This study, following an immunoinformatic approach, aimed to design a comprehensive mRNA vaccine against the EBV by selecting antigenic proteins, predicting Linear B-cell epitopes, cytotoxic T-cell lymphocyte (CTL) and helper T-cell lymphocyte (HTL) epitopes, and assessing vaccine characteristics. Seventy-nine EBV isolates from diverse geographical regions were examined. Additionally, the vaccine construct's physicochemical properties, transmembrane domains, solubility, and secondary structures were analysed. Molecular docking was conducted with Toll-Like Receptor 5 (TLR-5). Population coverage was assessed for selected major histocompatibility complex (MHC) alleles, and immune response was simulated. The result of this study highlighted a vaccine construct with high antigenicity, non-toxicity, and non-allergenicity and possessed favourable physicochemical properties. The vaccine's 3D structure is native-like and strongly binds with TLR-5, indicating a solid affinity with TLR-5. The selected MHC alleles provided broad universal population coverage of 89.1%, and the immune simulations suggested a robust and wide-ranging immunogenic response, activating critical immune cells, antibodies, and cytokines. These findings provide a solid foundation for further development and testing of the EBV candidate vaccine, offering potential solutions for combating EBV infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA