Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Diabetologia ; 66(2): 376-389, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36404376

RESUMEN

AIMS/HYPOTHESIS: Normalisation of blood glucose in individuals with diabetes is recommended to reduce development of diabetic complications. However, risk of severe hypoglycaemia with intensive insulin therapy is a major obstacle that prevents many individuals with diabetes from obtaining the recommended reduction in HbA1c. Inhibition of glucagon receptor signalling and liver-preferential insulin action have been shown individually to have beneficial effects in preclinical models and individuals with diabetes (i.e. improved glycaemic control), but also have effects that are potential safety risks (i.e. alpha cell hyperplasia in response to glucagon receptor antagonists and increased levels of liver triacylglycerols and plasma alanine aminotransferase activity in response to glucagon receptor antagonists and liver-preferential insulin). We hypothesised that a combination of glucagon inhibition and liver-preferential insulin action in a dual-acting molecule would widen the therapeutic window. By correcting two pathogenic mechanisms (dysregulated glucagon signalling and non-physiological distribution of conventional insulin administered s.c.), we hypothesised that lower doses of each component would be required to obtain sufficient reduction of hyperglycaemia, and that the undesirable effects that have previously been observed for monotreatment with glucagon antagonists and liver-preferential insulin could be avoided. METHODS: A dual-acting glucagon receptor inhibitor and liver-preferential insulin molecule was designed and tested in rodent models (normal rats, rats with streptozotocin-induced hyperglycaemia, db/db mice and mice with diet-induced obesity and streptozotocin-induced hyperglycaemia), allowing detailed characterisation of the pharmacokinetic and pharmacodynamic properties of the dual-acting molecule and relevant control compounds, as well as exploration of how the dual-acting molecule influenced glucagon-induced recovery and spontaneous recovery from acute hypoglycaemia. RESULTS: This molecule normalised blood glucose in diabetic models, and was markedly less prone to induce hypoglycaemia than conventional insulin treatment (approximately 4.6-fold less potent under hypoglycaemic conditions than under normoglycaemic conditions). However, compared to treatment with conventional long-acting insulin, this dual-acting molecule also increased triacylglycerol levels in the liver (approximately 60%), plasma alanine aminotransferase levels (approximately twofold) and alpha cell mass (approximately twofold). CONCLUSIONS/INTERPRETATION: While the dual-acting glucagon receptor inhibitor and liver-preferential insulin molecule showed markedly improved regulation of blood glucose, effects that are potential safety concerns persisted in the pharmacologically relevant dose range.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Hipoglucemia , Ratas , Animales , Ratones , Insulina/uso terapéutico , Glucagón , Glucemia , Receptores de Glucagón , Alanina Transaminasa , Estreptozocina , Hipoglucemia/tratamiento farmacológico , Hiperglucemia/tratamiento farmacológico , Modelos Animales de Enfermedad , Hígado , Diabetes Mellitus/tratamiento farmacológico
2.
Biochem J ; 440(3): 301-8, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21851336

RESUMEN

The relative expression patterns of the two IR (insulin receptor) isoforms, +/- exon 11 (IR-B/IR-A respectively), are tissue-dependent. Therefore we have developed insulin analogues with different binding affinities for the two isoforms to test whether tissue-preferential biological effects can be attained. In rats and mice, IR-B is the most prominent isoform in the liver (> 95%) and fat (> 90%), whereas in muscles IR-A is the dominant isoform (> 95%). As a consequence, the insulin analogue INS-A, which has a higher relative affinity for human IR-A, had a higher relative potency [compared with HI (human insulin)] for glycogen synthesis in rat muscle strips (26%) than for glycogen accumulation in rat hepatocytes (5%) and for lipogenesis in rat adipocytes (4%). In contrast, the INS-B analogue, which has an increased affinity for human IR-B, had higher relative potencies (compared with HI) for inducing glycogen accumulation (75%) and lipogenesis (130%) than for affecting muscle (45%). For the same blood-glucose-lowering effect upon acute intravenous dosing of mice, INS-B gave a significantly higher degree of IR phosphorylation in liver than HI. These in vitro and in vivo results indicate that insulin analogues with IR-isoform-preferential binding affinity are able to elicit tissue-selective biological responses, depending on IR-A/IR-B expression.


Asunto(s)
Hipoglucemiantes/farmacología , Insulina/análogos & derivados , Receptor de Insulina/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Unión Competitiva , Glucemia , Encéfalo/metabolismo , Células Cultivadas , Expresión Génica , Glucógeno/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Insulina/farmacología , Riñón/metabolismo , Lipogénesis/efectos de los fármacos , Hígado/citología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Especificidad de Órganos , Fosforilación , Cultivo Primario de Células , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor de Insulina/agonistas , Receptor de Insulina/genética , Bazo/metabolismo , Sus scrofa
3.
Am J Physiol Cell Physiol ; 297(4): C1041-52, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19657063

RESUMEN

5'-AMP-activated protein kinase (AMPK) regulates several aspects of metabolism. Recently, A-769662 was shown to activate AMPK in skeletal muscle. However, no biological effects of AMPK activation by A-769662 in this tissue have been reported. We hypothesized that A-769662 would increase glucose uptake in skeletal muscle. We studied incubated soleus and extensor digitorum longus (EDL) muscles from 129S6/sv and C57BL/6 mice. Glucose uptake increased only in soleus from 129S6/sv when concentrations of A-769662 were 500 microM (approximately 15%, P < 0.05) and 1 mM (approximately 60%, P < 0.01). AMPK beta1- but not beta2-containing complexes were dose dependently activated by A-769662 in muscles from both genotypes (approximately 100% at 200 microM and 300-600% at 1 mM). The discrepancy between the A-769662-induced AMPK activation pattern and stimulation of glucose uptake suggested that these effects were unrelated. A-769662 increased phosphorylation of Akt in both muscles from both genotypes, with phosphorylation of T308 being significantly higher in soleus than in EDL in 129S6/sv mice (P < 0.01). In soleus from 129S6/sv mice, insulin receptor substrate 1-associated phosphatidylinositol 3 (PI3)-kinase activity was markedly increased with A-769662, and Akt phosphorylation and glucose uptake were inhibited by wortmannin while phosphorylation of acetyl-CoA carboxylase (S227) was unaffected. Thus, A-769662 activates beta1-containing AMPK complexes in skeletal muscle but induces glucose uptake through a PI3-kinase-dependent pathway. Although development of A-769662 has constituted a step forward in the search for AMPK activators targeting specific AMPK trimers, our data suggest that in intact muscle, A-769662 has off-target effects. This may limit use of A-769662 to study the role of AMPK in skeletal muscle metabolism.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/metabolismo , Músculo Esquelético/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Pironas/farmacología , Tiofenos/farmacología , Acetil-CoA Carboxilasa/metabolismo , Androstadienos/farmacología , Animales , Compuestos de Bifenilo , Activación Enzimática , Femenino , Técnicas In Vitro , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Multimerización de Proteína , Transducción de Señal , Wortmanina
4.
Diabetes ; 67(5): 946-959, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29483182

RESUMEN

Cardiovascular disease caused by atherosclerosis is the leading cause of mortality associated with type 2 diabetes and metabolic syndrome. Insulin therapy is often needed to improve glycemic control, but it does not clearly prevent atherosclerosis. Upon binding to the insulin receptor (IR), insulin activates distinct arms of downstream signaling. The IR-Akt arm is associated with blood glucose lowering and beneficial effects, whereas the IR-Erk arm might exert less desirable effects. We investigated whether selective activation of the IR-Akt arm, leaving the IR-Erk arm largely inactive, would result in protection from atherosclerosis in a mouse model of metabolic syndrome. The insulin mimetic peptide S597 lowered blood glucose and activated Akt in insulin target tissues, mimicking insulin's effects, but only weakly activated Erk and even prevented insulin-induced Erk activation. Strikingly, S597 retarded atherosclerotic lesion progression through a process associated with protection from leukocytosis, thereby reducing lesional accumulation of inflammatory Ly6Chi monocytes. S597-mediated protection from leukocytosis was accompanied by reduced numbers of the earliest bone marrow hematopoietic stem cells and reduced IR-Erk activity in hematopoietic stem cells. This study provides a conceptually novel treatment strategy for advanced atherosclerosis associated with metabolic syndrome and type 2 diabetes.


Asunto(s)
Aterosclerosis/prevención & control , Glucemia/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Síndrome Metabólico/tratamiento farmacológico , Péptidos/farmacología , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Receptor de Insulina/efectos de los fármacos , Animales , Aterosclerosis/etiología , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/prevención & control , Modelos Animales de Enfermedad , Masculino , Síndrome Metabólico/complicaciones , Ratones , Ratones Noqueados , Monocitos , Placa Aterosclerótica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/agonistas , Receptor de Insulina/metabolismo , Receptores de LDL/genética , Transducción de Señal
5.
J Med Chem ; 50(7): 1495-503, 2007 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-17343371

RESUMEN

The aim was to identify a novel selective PPARdelta agonist with full efficacy on free fatty acid (FFA) oxidation in vitro and plasma lipid correction in vivo. Using the triple PPARalpha,gamma,delta agonist 1 as the structural starting point, we wanted to investigate the possibility of obtaining selective PPARdelta agonists by modifying only the acidic part of 1, while holding the lipophilic half of the molecule constant. The structure-activity relationship was guided by in vitro transactivation data using the human PPAR receptors, FFA oxidation efficacy performed in the rat muscle L6 cell line, and in vivo rat pharmacokinetic properties. Compound 7 ([4-[3,3-bis-(4-bromo-phenyl)-allylthio]-2-chloro-phenoxy]-acetic acid) was identified as a selective, partial agonist with good oral pharmacokinetic properties in rat. Chronic treatment of high fat fed ApoB100/CETP-Tgn mice with 7 corrected the plasma lipid parameters and improved insulin sensitivity. These data suggest that selective PPARdelta agonists have the potential to become a novel treatment of dyslipidemia.


Asunto(s)
Compuestos Alílicos/síntesis química , Metabolismo de los Lípidos/efectos de los fármacos , PPAR delta/agonistas , Fenilacetatos/síntesis química , Administración Oral , Compuestos Alílicos/farmacocinética , Compuestos Alílicos/farmacología , Animales , Apolipoproteína B-100/genética , Sitios de Unión , Línea Celular , Proteínas de Transferencia de Ésteres de Colesterol/genética , Cristalografía por Rayos X , Grasas de la Dieta/administración & dosificación , Ácidos Grasos no Esterificados/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Modelos Moleculares , Músculo Esquelético/citología , Oxidación-Reducción , Fenilacetatos/farmacocinética , Fenilacetatos/farmacología , Ratas , Relación Estructura-Actividad , Activación Transcripcional
6.
Diabetes ; 64(3): 1057-66, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25315006

RESUMEN

In addition to lowering of blood glucose, treatment with insulin also induces lipid synthesis and storage. Patients with type 2 diabetes often suffer from lipid-related comorbidities including dyslipidemia, obesity, and fatty liver disease. We examined here in two separate studies changes in lipid dynamics in Zucker diabetic fatty (ZDF) rats, in response to 7 days of treatment with either insulin or the insulin receptor agonist peptide S597. In concert with blood glucose normalization, the treated rats displayed large increases in hepatic de novo lipid synthesis and deposition of newly synthesized lipids in adipose tissue depots, accompanied by weight gain and expansion of adipose depots. In both treatment groups, heavy water labeling revealed that after 2 h (study A), de novo lipogenesis was responsible for 80% of newly stored hepatic triglyceride (TG)-palmitate, and after 5 days (study B), ∼60% of newly deposited TG-palmitate in adipose tissues originated from this pathway. Interestingly, in both studies, treatment with the insulin mimetic peptide resulted in significantly lower blood TG levels, plasma TG production rates, and hepatic de novo synthesized fatty acid in plasma TG compared with insulin. There were no differences in plasma TG turnover (clearance rate) in response to either treatment, consistent with differential actions on the liver. These results show that in ZDF rats, treatment with a synthetic insulin-receptor-activating peptide or with insulin to lower blood glucose is accompanied by different effects on hepatic lipid anabolism and blood TG profiles.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Receptor de Insulina/agonistas , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Diabetes Mellitus Experimental/sangre , Lípidos/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Péptidos/uso terapéutico , Ratas
7.
Bioorg Med Chem Lett ; 17(11): 3198-202, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17379517

RESUMEN

Computational analysis of the ligand binding pocket of the three PPAR receptor subtypes was utilized in the design of potent PPARalpha agonists. Optimum PPARalpha potency and selectivity were obtained with substituents having van der Waals volume around 260. Compound 6 had a PPARalpha potency of 0.002 microM and a selectivity ratio to PPARgamma and PPARdelta of 410 and 2000, respectively.


Asunto(s)
Diseño de Fármacos , PPAR alfa/agonistas , Fenilpropionatos/química , Fenilpropionatos/farmacología , Animales , Computadores , Cristalografía , Ligandos , PPAR alfa/química , Fenilpropionatos/síntesis química
8.
Am J Physiol Endocrinol Metab ; 283(5): E965-70, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12376323

RESUMEN

We examined whether acute activation of 5'-AMP-activated protein kinase (AMPK) by 5'-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR) ameliorates insulin resistance in isolated rat skeletal muscle. Insulin resistance was induced in extensor digitorum longus (EDL) muscles by prolonged exposure to 1.6 mM palmitate, which inhibited insulin-stimulated glycogen synthesis to 51% of control after 5 h of incubation. Insulin-stimulated glucose transport was less affected (22% of control). The decrease in glycogen synthesis was accompanied by decreased glycogen synthase (GS) activity and increased GS phosphorylation. When including 2 mM AICAR in the last hour of the 5-h incubation with palmitate, the inhibitory effect of palmitate on insulin-stimulated glycogen synthesis and glucose transport was eliminated. This effect of AICAR was accompanied by activation of AMPK. Importantly, AMPK inhibition was able to prevent this effect. Neither treatment affected total glycogen content. However, glucose 6-phosphate was increased after inclusion of AICAR, indicating increased influx of glucose. No effect of AICAR on the inhibited insulin-stimulated GS activity or increased GS phosphorylation by palmitate could be detected. Thus the mechanism by which AMPK activation ameliorates the lipid-induced insulin resistance probably involves induction of compensatory mechanisms overriding the insulin resistance. Our results emphasize AMPK as a promising molecular target for treatment of insulin resistance.


Asunto(s)
Adenilato Quinasa/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Ácidos Grasos no Esterificados/farmacología , Resistencia a la Insulina/fisiología , Músculo Esquelético/enzimología , Adenilato Quinasa/química , Secuencia de Aminoácidos , Aminoimidazol Carboxamida/farmacología , Animales , Activación Enzimática/efectos de los fármacos , Glucógeno/biosíntesis , Hipoglucemiantes/farmacología , Masculino , Datos de Secuencia Molecular , Palmitatos/farmacología , Ratas , Ratas Wistar , Ribonucleótidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA