Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Science ; 246(4931): 770-5, 1989 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-17748703

RESUMEN

Superconductivity is related to the presence of a narrow forbidden gap in the spectrum of the possible energies for the electrons in the material. These "superconductivity gaps" have traditionally been studied with tunneling and infrared absorption experiments. A third, powerful technique has been made possible by the discovery of hightransition temperature materials: the direct observation of the gap in photoemission spectra. The data analysis requires a careful reconsideration of the standard Einstein-Fermi model of the photoelectric effect. The conclusions are surprisingly simple and offer an alternate way to measure superconductivity gaps. This approach can also be used to study the directional properties of the gap, phenomena related to the coherence length, and possible departures from Fermi-liquid behavior.

2.
Science ; 245(4919): 731-3, 1989 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-17791711

RESUMEN

Detailed studies indicate a superconducting gap in the high-temperature superconductor Bi(2)Sr(2)CaCu(2)O(8). Photoemission measurements with high energy and angle resolution isolate the behavior of a single band as it crosses the Fermi level in both the normal and superconducting states, giving support to the Fermi liquid picture. The magnitude of the gap is 24 millielectron volts.

3.
Phys Rev Lett ; 93(26 Pt 1): 267205, 2004 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-15698019

RESUMEN

Our electron photoemission experiments demonstrate that the magnetization of the ferromagnetic state of UTe is proportional to the binding energy of the hybridized band centered around 50 meV below EF. This proportionality is direct evidence that the ferromagnetism of UTe is itinerant; i.e., the 5f electrons are not fully localized close to the atomic core. This mechanism of itinerant ferromagnetism differs from the traditional picture for 5f-electron magnetism in an essential and a novel way. We propose a simple model for the observed proportionality between the temperature dependence of the magnetization and the binding energy of the hybridized band near EF. This model allows us to estimate the effective magnetic interaction and to identify signatures of itinerant ferromagnetism in other materials.

4.
Phys Rev Lett ; 89(15): 157601, 2002 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-12366022

RESUMEN

Complementary angle-resolved photoemission and bulk-sensitive k-resolved resonant inelastic x-ray scattering of divalent hexaborides reveal a >1 eV X-point gap between the valence and conduction bands, in contradiction to the band overlap assumed in several models of their novel ferromagnetism. This semiconducting gap implies that carriers detected in transport measurements arise from defects, and the measured location of the bulk Fermi level at the bottom of the conduction band implicates boron vacancies as the origin of the excess electrons. The measured band structure and X-point gap in CaB6 additionally provide a stringent test case for many-body quasiparticle band calculations.

5.
Nature ; 416(6881): 610-3, 2002 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-11948344

RESUMEN

A change in 'symmetry' is often observed when matter undergoes a phase transition-the symmetry is said to be spontaneously broken. The transition made by underdoped high-transition-temperature (high-Tc) superconductors is unusual, in that it is not a mean-field transition as seen in other superconductors. Rather, there is a region in the phase diagram above the superconducting transition temperature Tc (where phase coherence and superconductivity begin) but below a characteristic temperature T* where a 'pseudogap' appears in the spectrum of electronic excitations. It is therefore important to establish if T* is just a cross-over temperature arising from fluctuations in the order parameter that will establish superconductivity at Tc (refs 3, 4), or if it marks a phase transition where symmetry is spontaneously broken. Here we report that, for a material in the pseudogap state, left-circularly polarized photons give a different photocurrent from right-circularly polarized photons. This shows that time-reversal symmetry is spontaneously broken below T*, which therefore corresponds to a phase transition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA