Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 93(40): 13534-13538, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34582180

RESUMEN

The proliferation of N-heterocyclic carbene (NHC) self-assembled monolayers (SAMs) on gold surfaces stems from their exceptional stability compared to conventional thiol-SAMs. The prospect of biological applications for NHC-SAMs on gold shows the need for biocompatible techniques (e.g., large biomolecule detection and high throughput) that assesses SAM molecular composition. Herein, we demonstrate that laser desorption ionization mass spectrometry (LDI-MS) is a powerful and facile probe of NHC surface chemistry. LDI-MS of prototypical imidazole-NHC- and benzimidazole-NHC-functionalized AuNPs yields exclusively [NHC2Au]+ ions and not larger gold clusters. Employing benzimidazole-NHC isotopologues, we explore how monolayers pack on a single AuNP and the lability of the NHCs once ligated. Quantitative analysis of the homoleptic and heteroleptic [NHC2Au]+ ions is performed by comparing to a binomial model representative of a randomized monolayer. Lastly, the reduction of nitro-NHC-AuNPs to amine-NHC-AuNPs is tracked via LDI-MS signals, illustrating the ability of LDI-MS to probe postsynthetic modifications of the anchored NHCs, which is critical for current and future applications of NHC surfaces.


Asunto(s)
Oro , Nanopartículas del Metal , Rayos Láser , Espectrometría de Masas , Metano/análogos & derivados
2.
J Chem Phys ; 154(3): 034703, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33499640

RESUMEN

We report a comprehensive experimental and theoretical study of the lower-wavenumber vibrational modes in the surface-enhanced hyper-Raman scattering (SEHRS) of Rhodamine 6G (R6G) and its isotopologue R6G-d4. Measurements acquired on-resonance with two different electronic states, S1 and S2, are compared to the time-dependent density functional theory computations of the resonance hyper-Raman spectra and electrodynamics-quantum mechanical computations of the SEHRS spectra on-resonance with S1 and S2. After accounting for surface orientation, we find excellent agreement between experiment and theory for both R6G and its isotopologue. We then present a detailed analysis of the complex vibronic coupling effects in R6G and the importance of surface orientation for characterizing the system. This combination of theory and experiment allows, for the first time, an unambiguous assignment of lower-wavenumber vibrational modes of R6G and its isotopologue R6G-d4.

3.
J Biophotonics ; 15(1): e202100158, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34609064

RESUMEN

Multiphoton microscopy using short-wave infrared (SWIR) radiation offers nondestructive and high-resolution imaging through tissue. Two-photon fluorescence (TPF), for example, is commonly employed to increase the penetration depth and spatial resolution of SWIR imaging, but the broad spectral peaks limit its multiplexing capabilities. Hyper-Raman scattering, the vibrational analog of TPF, yields spectral features on the order of 20 cm-1 and reporter-functionalized noble metal nanoparticles (NPs) provide a platform for both hyper-Raman signal enhancement and selective targeting in biological media. Herein we report the first tissue imaging study employing surface-enhanced resonance hyper-Raman scattering (SERHRS), the two-photon analog of surface-enhanced resonance Raman scattering. Specifically, we employ multicore gold-silica NPs (Au@SiO2 NPs) functionalized with a near infrared-resonant cyanine dye, 3,3'-diethylthiatricarbocyanine iodide as a SERHRS reporter. SWIR SERHRS spectra are efficiently acquired from mouse spleen tissue. SWIR SERHRS combines two-photon imaging advantages with narrow vibrational peak widths, presenting future applications of multitargeted bioimaging.


Asunto(s)
Nanopartículas del Metal , Espectrometría Raman , Animales , Oro , Ratones , Microscopía , Dióxido de Silicio
4.
ACS Omega ; 7(7): 6419-6426, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35224403

RESUMEN

The high sensitivity and functional group selectivity of surface-enhanced Raman scattering (SERS) make it an attractive method for enzyme sensing, but there is currently a severe lack of enzyme substrates that release SERS reporter molecules with favorable detection properties. We find that 2-mercaptopyridine-3-carbonitrile ( o-MPN) and 2-mercaptopyridine-5-carbonitrile ( p-MPN) are highly effective as SERS reporter molecules that can be captured by silver or gold nanoparticles to give intense SERS spectra, each with a distinctive nitrile peak at 2230 cm-1. p-MPN is a more sensitive reporter and can be detected at low nanomolar concentrations. An assay validation study synthesized two novel substrate molecules, Glc-o-MPN and Glc-p-MPN, and showed that they can be cleaved efficiently by ß-glucosidase (K m = 228 and 162 µM, respectively), an enzyme with broad industrial and biomedical utility. Moreover, SERS detection of the released reporters ( o-MPN or p-MPN) enabled sensing of ß-glucosidase activity and ß-glucosidase inhibition. Comparative experiments using a crude almond flour extract showed that the presence of ß-glucosidase activity could be confirmed by SERS detection in a much shorter time period (>10 time shorter) than by UV-vis absorption detection. It is likely that a wide range of enzyme assays and diagnostic tests can be developed using 2-mercaptopyridine-carbonitriles as SERS reporter molecules.

5.
Appl Spectrosc ; 74(11): 1374-1383, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32508116

RESUMEN

The cucurbit[n]uril (CB[n]) family of macrocycles are known to bind a variety of small molecules with high affinity. These motifs thus have promise in an ever-growing list of trace detection methods. Surface-enhanced Raman scattering (SERS) detection schemes employing CB[n] motifs exhibit increased sensitivity due to selective concentration of the analyte at the nanoparticle surface, coupled with the ability of CB[n] to facilitate the formation of well-defined electromagnetic hot spots. Herein, we report a CB[7] SERS assay for quantification of phenylalanine (Phe) and further demonstrate its utility for detecting peptides with an N-terminal Phe. The CB[7]-guest interaction improves the sensitivity 5-25-fold over direct detection of Phe using citrate-capped silver nanoparticle aggregates, enabling use of a portable Raman system. We further illustrate detection of insulin via binding of CB[7] to the N-terminal Phe residue on its B-chain, suggesting a general strategy for detecting Phe-terminated peptides of clinically relevant biomolecules.


Asunto(s)
Péptidos/análisis , Fenilalanina/análisis , Espectrometría Raman/métodos , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/metabolismo , Humanos , Compuestos Macrocíclicos/química , Nanopartículas del Metal , Fenilcetonurias/diagnóstico , Fenilcetonurias/metabolismo , Plata/química
6.
Nanoscale ; 12(31): 16489-16500, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32790810

RESUMEN

With arms radiating from a central core, gold nanostars represent a unique and fascinating class of nanomaterials from which extraordinary plasmonic properties are derived. Despite their relevance to sensing applications, methods for fabricating homogeneous populations of nanostars on large-area planar surfaces in truly periodic arrays is lacking. Herein, the fabrication of nanostar arrays is demonstrated through the formation of hexagonal patterns of near-hemispherical gold seeds and their subsequent exposure to a liquid-state chemical environment that is conducive to colloidal nanostar formation. Three different colloidal nanostar protocols were targeted where HEPES, DMF, and ascorbic acid represent a key reagent in their respective redox chemistries. Only the DMF-driven synthesis proved readily adaptable to the substrate-based platform but nanostar-like structures emerged from the other protocols when synthetic controls such as reaction kinetics, the addition of Ag+ ions, and pH adjustments were applied. Because the nanostars were derived from near-hemispherical seeds, they acquired a unique geometry that resembles a conventional nanostar that has been truncated near its midsection. Simulations of plasmonic properties of this geometry reveal that such structures can exhibit maximum near-field intensities that are as much as seven-times greater than the standard nanostar geometry, a finding that is corroborated by surface-enhanced Raman scattering (SERS) measurements showing large enhancement factors. The study adds nanostars to the library of nanostructure geometries that are amenable to large-area periodic arrays and provides a potential pathway for the nanofabrication of SERS substrates with even greater enhancements.

7.
Annu Rev Anal Chem (Palo Alto Calif) ; 11(1): 147-169, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29547340

RESUMEN

Owing to its extreme sensitivity and easy execution, surface-enhanced Raman spectroscopy (SERS) now finds application for a wide variety of problems requiring sensitive and targeted analyte detection. This widespread application has prompted a proliferation of different SERS-based sensors, suggesting the need for a framework to classify existing methods and guide the development of new techniques. After a brief discussion of the general SERS modalities, we classify SERS-based sensors according the origin of the signal. Three major categories emerge from this analysis: surface-affinity strategy, SERS-tag strategy, and probe-mediated strategy. For each case, we describe the mechanism of action, give selected examples, and point out general misconceptions to aid the construction of new devices. We hope this review serves as a useful tutorial guide and helps readers to better classify and design practical and effective SERS-based sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA