Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 150(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36779913

RESUMEN

Enteric nervous system development relies on intestinal colonization by enteric neural crest-derived cells (ENCDCs). This is driven by a population of highly migratory and proliferative ENCDCs at the wavefront, but the molecular characteristics of these cells are unknown. ENCDCs from the wavefront and the trailing region were isolated and subjected to RNA-seq. Wavefront-ENCDCs were transcriptionally distinct from trailing ENCDCs, and temporal modelling confirmed their relative immaturity. This population of ENCDCs exhibited altered expression of ECM and cytoskeletal genes, consistent with a migratory phenotype. Unlike trailing ENCDCs, the wavefront lacked expression of genes related to neuronal or glial maturation. As wavefront ENCDC genes were associated with migration and developmental immaturity, the genes that remain expressed in later progenitor populations may be particularly pertinent to understanding the maintenance of ENCDC progenitor characteristics. Dusp6 expression was specifically upregulated at the wavefront. Inhibiting DUSP6 activity prevented wavefront colonization of the hindgut, and inhibited the migratory ability of post-colonized ENCDCs from midgut and postnatal neurospheres. These effects were reversed by simultaneous inhibition of ERK signaling, indicating that DUSP6-mediated ERK inhibition is required for ENCDC migration in mouse and chick.


Asunto(s)
Sistema Nervioso Entérico , Ratones , Animales , Cresta Neural/metabolismo , Transcriptoma , Movimiento Celular/fisiología , Intestinos
2.
Stem Cells ; 39(9): 1236-1252, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33938072

RESUMEN

Interplay between embryonic enteric neural stem cells (ENSCs) and enteric mesenchymal cells (EMCs) in the embryonic gut is essential for normal development of the enteric nervous system. Disruption of these interactions underlies the pathogenesis of intestinal aganglionosis in Hirschsprung disease (HSCR). ENSC therapy has been proposed as a possible treatment for HSCR, but whether the survival and development of postnatal-derived ENSCs similarly rely on signals from the mesenchymal environment is unknown and has important implications for developing protocols to expand ENSCs for cell transplantation therapy. Enteric neural crest-derived cells (ENCDCs) and EMCs were cultured from the small intestine of Wnt1-Rosa26-tdTomato mice. EMCs promoted the expansion of ENCDCs 9.5-fold by inducing ENSC properties, including expression of Nes, Sox10, Sox2, and Ngfr. EMCs enhanced the neurosphere-forming ability of ENCDCs, and this persisted after withdrawal of the EMCs. These effects were mediated by paracrine factors and several ligands known to support neural stem cells were identified in EMCs. Using the optimized expansion procedures, neurospheres were generated from small intestine of the Ednrb-/- mouse model of HSCR. These ENSCs had similar proliferative and migratory capacity to Ednrb+/+ ENSCs, albeit neurospheres contained fewer neurons. ENSCs derived from Ednrb-/- mice generated functional neurons with similar calcium responses to Ednrb+/+ ENSCs and survived after transplantation into the aganglionic colon of Ednrb-/- recipients. EMCs act as supporting cells to ENSCs postnatally via an array of synergistically acting paracrine signaling factors. These properties can be leveraged to expand autologous ENSCs from patients with HSCR mutations for therapeutic application.


Asunto(s)
Sistema Nervioso Entérico , Enfermedad de Hirschsprung , Células-Madre Neurales , Animales , Enfermedad de Hirschsprung/genética , Enfermedad de Hirschsprung/metabolismo , Enfermedad de Hirschsprung/terapia , Humanos , Intestino Delgado/metabolismo , Ratones , Ratones Endogámicos C57BL , Cresta Neural/metabolismo , Células-Madre Neurales/metabolismo
3.
Front Cell Dev Biol ; 10: 917243, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35959491

RESUMEN

Hirschsprung disease is most often characterized by aganglionosis limited to the distal colon and rectum, and mice lacking the Endothelin receptor type B (Ednrb) faithfully recapitulate this phenotype. However, despite the presence of enteric ganglia in the small intestine, both human patients and Ednrb-/- mice suffer from dysmotility and altered gastrointestinal function, thus raising the possibility of enteric nervous system (ENS) abnormalities proximal to the aganglionic region. We undertook the present study to determine whether abnormalities with the ENS in ganglionated regions may account for abnormal gastrointestinal function. We performed single-cell RNA sequencing on ENS cells from the small intestine of Ednrb-/- mice and compared the results to a published single-cell dataset. Our results identified a missing population of neurons marked by the enzyme Gad2, which catalyzes the production of γ-Aminobutyric acid (GABA), in the small intestine of Ednrb-/- animals. This result was confirmed by immunostaining enteric ganglia from Ednrb-/- mice and their wild-type littermates. These data show for the first time that ganglionated regions of the Hirschsprung gut lack a neuronal subpopulation, which may explain the persistent gastrointestinal dysfunction after surgical correction of Hirschsprung disease.

4.
Stem Cells Transl Med ; 11(12): 1232-1244, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36322091

RESUMEN

Cell therapy offers the potential to replace the missing enteric nervous system (ENS) in patients with Hirschsprung disease (HSCR) and to restore gut function. The Schwann cell (SC) lineage has been shown to generate enteric neurons pre- and post-natally. Here, we aimed to isolate SCs from the aganglionic segment of HSCR and to determine their potential to restore motility in the aganglionic colon. Proteolipid protein 1 (PLP1) expressing SCs were isolated from the extrinsic nerve fibers present in the aganglionic segment of postnatal mice and patients with HSCR. Following 7-10 days of in vitro expansion, HSCR-derived SCs were transplanted into the aganglionic mouse colon ex vivo and in vivo. Successful engraftment and neuronal differentiation were confirmed immunohistochemically and calcium activity of transplanted cells was demonstrated by live cell imaging. Organ bath studies revealed the restoration of motor function in the recipient aganglionic smooth muscle. These results show that SCs isolated from the aganglionic segment of HSCR mouse can generate functional neurons within the aganglionic gut environment and restore the neuromuscular activity of recipient mouse colon. We conclude that HSCR-derived SCs represent a potential autologous source of neural progenitor cells for regenerative therapy in HSCR.


Asunto(s)
Enfermedad de Hirschsprung , Células-Madre Neurales , Ratones , Animales , Enfermedad de Hirschsprung/terapia , Enfermedad de Hirschsprung/metabolismo , Neuronas/metabolismo , Células-Madre Neurales/trasplante , Células de Schwann/metabolismo
5.
Neurogastroenterol Motil ; 34(5): e14357, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35279902

RESUMEN

BACKGROUND: Tamoxifen is widely used for Cre-estrogen receptor-mediated genomic recombination in transgenic mouse models to mark cells for lineage tracing and to study gene function. However, recent studies have highlighted off-target effects of tamoxifen in various tissues and cell types when used for induction of Cre recombination. Despite the widespread use of these transgenic Cre models to assess gastrointestinal (GI) function, the effect of tamoxifen exposure on GI motility has not been described. METHODS: We examined the effects of tamoxifen on GI motility by measuring total GI transit, gastric emptying, small intestinal transit, and colonic contractility in wild-type adult mice. KEY RESULTS: We observed a significant delay in total GI transit in tamoxifen-treated mice, with unaltered gastric emptying, accelerated small intestinal transit, and abnormal colonic motility. CONCLUSION: Our findings highlight the importance of considering GI motility alterations induced by tamoxifen when designing protocols that utilize tamoxifen as a Cre-driver for studying GI function.


Asunto(s)
Motilidad Gastrointestinal , Tamoxifeno , Animales , Vaciamiento Gástrico , Tránsito Gastrointestinal , Ratones , Ratones Transgénicos , Tamoxifeno/farmacología
6.
Sci Transl Med ; 14(646): eabl8753, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35613280

RESUMEN

Stem cell therapies for nervous system disorders are hindered by a lack of accessible autologous sources of neural stem cells (NSCs). In this study, neural crest-derived Schwann cells are found to populate nerve fiber bundles (NFBs) residing in mouse and human subcutaneous adipose tissue (SAT). NFBs containing Schwann cells were harvested from mouse and human SAT and cultured in vitro. During in vitro culture, SAT-derived Schwann cells remodeled NFBs to form neurospheres and exhibited neurogenic differentiation potential. Transcriptional profiling determined that the acquisition of these NSC properties can be attributed to dedifferentiation processes in cultured Schwann cells. The emerging population of cells were termed SAT-NSCs because of their considerably distinct gene expression profile, cell markers, and differentiation potential compared to endogenous Schwann cells existing in vivo. SAT-NSCs successfully engrafted to the gastrointestinal tract of mice, migrated longitudinally and circumferentially within the muscularis, differentiated into neurons and glia, and exhibited neurochemical coding and calcium signaling properties consistent with an enteric neuronal phenotype. These cells rescued functional deficits associated with colonic aganglionosis and gastroparesis, indicating their therapeutic potential as a cell therapy for gastrointestinal dysmotility. SAT can be harvested easily and offers unprecedented accessibility for the derivation of autologous NSCs from adult tissues. Evidence from this study indicates that SAT-NSCs are not derived from mesenchymal stem cells and instead originate from Schwann cells within NFBs. Our data describe efficient isolation procedures for mouse and human SAT-NSCs and suggest that these cells have potential for therapeutic applications in gastrointestinal motility disorders.


Asunto(s)
Células-Madre Neurales , Células de Schwann , Tejido Adiposo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Ratones , Neurogénesis , Células de Schwann/metabolismo , Grasa Subcutánea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA