RESUMEN
OBJECTIVE: Cerebral small vessel diseases (cSVDs) are a major cause of stroke and dementia. We used cutting-edge 7T-MRI techniques in patients with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL), to establish which aspects of cerebral small vessel function are affected by this monogenic form of cSVD. METHODS: We recruited 23 CADASIL patients (age 51.1 ± 10.1 years, 52% women) and 13 age- and sex-matched controls (46.1 ± 12.6, 46% women). Small vessel function measures included: basal ganglia and centrum semiovale perforating artery blood flow velocity and pulsatility, vascular reactivity to a visual stimulus in the occipital cortex and reactivity to hypercapnia in the cortex, subcortical gray matter, white matter, and white matter hyperintensities. RESULTS: Compared with controls, CADASIL patients showed lower blood flow velocity and higher pulsatility index within perforating arteries of the centrum semiovale (mean difference - 0.09 cm/s, p = 0.03 and 0.20, p = 0.009) and basal ganglia (mean difference - 0.98 cm/s, p = 0.003 and 0.17, p = 0.06). Small vessel reactivity to a short visual stimulus was decreased (blood-oxygen-level dependent [BOLD] mean difference -0.21%, p = 0.04) in patients, while reactivity to hypercapnia was preserved in the cortex, subcortical gray matter, and normal appearing white matter. Among patients, reactivity to hypercapnia was decreased in white matter hyperintensities compared to normal appearing white matter (BOLD mean difference -0.29%, p = 0.02). INTERPRETATION: Multiple aspects of cerebral small vessel function on 7T-MRI were abnormal in CADASIL patients, indicative of increased arteriolar stiffness and regional abnormalities in reactivity, locally also in relation to white matter injury. These observations provide novel markers of cSVD for mechanistic and intervention studies. ANN NEUROL 2023;93:29-39.
Asunto(s)
CADASIL , Enfermedades de los Pequeños Vasos Cerebrales , Humanos , Femenino , Adulto , Persona de Mediana Edad , Masculino , CADASIL/diagnóstico por imagen , Hipercapnia/diagnóstico por imagen , Imagen por Resonancia Magnética , Infarto Cerebral , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagenRESUMEN
INTRODUCTION: Cerebral perforating arteries provide blood supply to the deep regions of the brain. Recently, it became possible to measure blood flow velocity and pulsatility in these small arteries. It is unknown if vascular risk factors are related to these measures. METHODS: We measured perforating artery flow with 2D phase contrast 7 Tesla MRI at the level of the centrum semiovale (CSO) and the basal ganglia (BG) in seventy participants from the Heart Brain Connection study with carotid occlusive disease (COD), vascular cognitive impairment (VCI), or no actual cerebrovascular disease. Vascular risk factors included hypertension, diabetes, hyperlipidemia and smoking. RESULTS: No consistent relations were found between any of the vascular risk factors and either flow velocity or flow pulsatility, although there was a relation between lower diastolic blood pressure and higher pulse pressure and higher cerebral perforator pulsatility (p=0,045 and p=0,044, respectively) at the BG level. Results were similar in stratified analyses for patients with and without a history of cardiovascular disease, or only COD or VCI. CONCLUSION: We conclude that, cross-sectionally, cerebral perforating artery flow velocity and pulsatility are largely independent of the presence of common vascular risk factors in a population with a mixed vascular burden.
RESUMEN
BACKGROUND: Damping of heartbeat-induced pressure pulsations occurs in large arteries such as the aorta and extends to the small arteries and microcirculation. Since recently, 7 T MRI enables investigation of damping in the small cerebral arteries. PURPOSE: To investigate flow pulsatility damping between the first segment of the middle cerebral artery (M1) and the small perforating arteries using magnetic resonance imaging. STUDY TYPE: Retrospective. SUBJECTS: Thirty-eight participants (45% female) aged above 50 without history of heart failure, carotid occlusive disease, or cognitive impairment. FIELD STRENGTH/SEQUENCE: 3 T gradient echo (GE) T1-weighted images, spin-echo fluid-attenuated inversion recovery images, GE two-dimensional (2D) phase-contrast, and GE cine steady-state free precession images were acquired. At 7 T, T1-weighted images, GE quantitative-flow, and GE 2D phase-contrast images were acquired. ASSESSMENT: Velocity pulsatilities of the M1 and perforating arteries in the basal ganglia (BG) and semi-oval center (CSO) were measured. We used the damping index between the M1 and perforating arteries as a damping indicator (velocity pulsatilityM1 /velocity pulsatilityCSO/BG ). Left ventricular stroke volume (LVSV), mean arterial pressure (MAP), pulse pressure (PP), and aortic pulse wave velocity (PWV) were correlated with velocity pulsatility in the M1 and in perforating arteries, and with the damping index of the CSO and BG. STATISTICAL TESTS: Correlations of LVSV, MAP, PP, and PWV with velocity pulsatility in the M1 and small perforating arteries, and correlations with the damping indices were evaluated with linear regression analyses. RESULTS: PP and PWV were significantly positively correlated to M1 velocity pulsatility. PWV was significantly negatively correlated to CSO velocity pulsatility, and PP was unrelated to CSO velocity pulsatility (P = 0.28). PP and PWV were uncorrelated to BG velocity pulsatility (P = 0.25; P = 0.68). PWV and PP were significantly positively correlated with the CSO damping index. DATA CONCLUSION: Our study demonstrated a dynamic damping of velocity pulsatility between the M1 and small cerebral perforating arteries in relation to proximal stress. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 1.
Asunto(s)
Análisis de la Onda del Pulso , Rigidez Vascular , Anciano , Velocidad del Flujo Sanguíneo/fisiología , Arterias Cerebrales , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Estudios Retrospectivos , Rigidez Vascular/fisiologíaRESUMEN
BACKGROUND: Cerebral small vessel disease (SVD) lesions on MRI are common in patients with cognitive impairment. It has been suggested that cerebral hypoperfusion is involved in the etiology of these lesions. OBJECTIVE: The aim of the study was to determine the relationship between cerebral blood flow (CBF) and SVD burden in patients referred to a memory clinic with SVD on MRI. METHOD: We included 132 memory clinic patients (mean age 73 ± 10, 56% male) with SVD on MRI. We excluded patients with large non-lacunar cortical infarcts. Global CBF (mL/min per 100 mL of brain tissue) was derived from 2-dimensional phase-contrast MRI focused on the internal carotid arteries and the basilar artery. SVD burden was defined as the sum of (each 1 point): white matter hyperintensities (WMHs) Fazekas 1 or more, lacunes, microbleeds (MBs), or enlarged perivascular spaces (PVS) presence, and each SVD feature separately. Linear regression analyses were performed to study the association between CBF and SVD burden, age- and sex-adjusted. RESULTS: Median SVD burden score was 2, 36.4% of patients had MBs, 35.6% lacunar infarcts, 48.4% intermediate to severe enlarged PVS, and 57.6% a WMH Fazekas score 2 or more. Median WMH volume was 21.4 mL (25% quartile: 9.6 mL, 75% quartile: 32.5 mL). Mean CBF ± SD was 44.0 ± 11.9 mL/min per 100 mL brain. There was no relation between CBF and overall SVD burden (CBF difference per burden score point [95% CI]: -0.5 [-2.4; 1.4] mL/min/100 mL brain, p = 0.9). CBF did also not differ according to presence or absence or an high burden of any of the individual SVD features. Moreover, there was no significant relation between WMH volume and CBF (CBF difference per ml increase in WMH [95% CI] -0.6 [-1.5; 0.3] mL/min/100 mL brain p = 0.2). CONCLUSION: Global CBF was not related to overall SVD burden or with individual SVD features in this memory clinic cohort, indicating that in this setting these lesions were not primarily due to cerebral hypoperfusion.
Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Circulación Cerebrovascular , Cognición , Disfunción Cognitiva/etiología , Trastornos de la Memoria/etiología , Memoria , Accidente Vascular Cerebral Lacunar/complicaciones , Anciano , Anciano de 80 o más Años , Velocidad del Flujo Sanguíneo , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/fisiopatología , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/psicología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Trastornos de la Memoria/diagnóstico , Trastornos de la Memoria/psicología , Persona de Mediana Edad , Servicio Ambulatorio en Hospital , Imagen de Perfusión , Derivación y Consulta , Factores de Riesgo , Accidente Vascular Cerebral Lacunar/diagnóstico por imagen , Accidente Vascular Cerebral Lacunar/fisiopatologíaRESUMEN
BACKGROUND AND OBJECTIVES: Cerebral small vessel disease (cSVD) is a major cause of stroke and dementia, but little is known about disease mechanisms at the level of the small vessels. 7T-MRI allows assessing small vessel function in vivo in different vessel populations. We hypothesized that multiple aspects of small vessel function are altered in patients with cSVD and that these abnormalities relate to disease burden. METHODS: Patients and controls participated in a prospective observational cohort study, the ZOOM@SVDs study. Small vessel function measures on 7T-MRI included perforating artery blood flow velocity and pulsatility index in the basal ganglia and centrum semiovale, vascular reactivity to visual stimulation in the occipital cortex, and reactivity to hypercapnia in the gray and white matter. Lesion load on 3T-MRI and cognitive function were used to assess disease burden. RESULTS: Forty-six patients with sporadic cSVD (mean age ± SD 65 ± 9 years) and 22 matched controls (64 ± 7 years) participated in the ZOOM@SVDs study. Compared with controls, patients had increased pulsatility index (mean difference 0.09, p = 0.01) but similar blood flow velocity in basal ganglia perforating arteries and similar flow velocity and pulsatility index in centrum semiovale perforating arteries. The duration of the vascular response to brief visual stimulation in the occipital cortex was shorter in patients than in controls (mean difference -0.63 seconds, p = 0.02), whereas reactivity to hypercapnia was not significantly affected in the gray and total white matter. Among patients, reactivity to hypercapnia was lower in white matter hyperintensities compared with normal-appearing white matter (blood-oxygen-level dependent mean difference 0.35%, p = 0.001). Blood flow velocity and pulsatility index in basal ganglia perforating arteries and reactivity to brief visual stimulation correlated with disease burden. DISCUSSION: We observed abnormalities in several aspects of small vessel function in patients with cSVD indicative of regionally increased arteriolar stiffness and decreased reactivity. Worse small vessel function also correlated with increased disease burden. These functional measures provide new mechanistic markers of sporadic cSVD.
Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Hipercapnia , Humanos , Arterias , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Prospectivos , Persona de Mediana Edad , AncianoRESUMEN
Background: Hypertension is the leading modifiable risk factor for cerebral small vessel diseases (SVDs). Yet, it is unknown whether antihypertensive drug classes differentially affect microvascular function in SVDs. Aims: To test whether amlodipine has a beneficial effect on microvascular function when compared to either losartan or atenolol, and whether losartan has a beneficial effect when compared to atenolol in patients with symptomatic SVDs. Design: TREAT-SVDs is an investigator-led, prospective, open-label, randomised crossover trial with blinded endpoint assessment (PROBE design) conducted at five study sites across Europe. Patients aged 18 years or older with symptomatic SVD who have an indication for antihypertensive treatment and are suffering from either sporadic SVD and a history of lacunar stroke or vascular cognitive impairment (group A) or CADASIL (group B) are randomly allocated 1:1:1 to one of three sequences of antihypertensive treatment. Patients stop their regular antihypertensive medication for a 2-week run-in period followed by 4-week periods of monotherapy with amlodipine, losartan and atenolol in random order as open-label medication in standard dose. Outcomes: The primary outcome measure is cerebrovascular reactivity (CVR) as determined by blood oxygen level dependent brain MRI signal response to hypercapnic challenge with change in CVR in normal appearing white matter as primary endpoint. Secondary outcome measures are mean systolic blood pressure (BP) and BP variability (BPv). Discussion: TREAT-SVDs will provide insights into the effects of different antihypertensive drugs on CVR, BP, and BPv in patients with symptomatic sporadic and hereditary SVDs. Funding: European Union's Horizon 2020 programme. Trial registration: NCT03082014.
Asunto(s)
Amlodipino , Antihipertensivos , Humanos , Amlodipino/farmacología , Antihipertensivos/farmacología , Presión Sanguínea , Atenolol/farmacología , Losartán/farmacología , Estudios Cruzados , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
BACKGROUND: Hypertension is the leading risk factor for cerebral small vessel disease. We aimed to determine whether antihypertensive drug classes differentially affect microvascular function in people with small vessel disease. METHODS: We did a multicentre, open-label, randomised crossover trial with blinded endpoint assessment at five specialist centres in Europe. We included participants aged 18 years or older with symptomatic sporadic small vessel disease or cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and an indication for antihypertensive treatment. Participants were randomly assigned (1:1:1) to one of three sequences of antihypertensive treatment using a computer-generated multiblock randomisation, stratified by study site and patient group. A 2-week washout period was followed by three 4-week periods of oral monotherapy with amlodipine, losartan, or atenolol at approved doses. The primary endpoint was change in cerebrovascular reactivity (CVR) determined by blood oxygen level-dependent MRI response to hypercapnic challenge in normal-appearing white matter from the end of washout to the end of each treatment period. Efficacy analyses were done by intention-to-treat principles in all randomly assigned participants who had at least one valid assessment for the primary endpoint, and analyses were done separately for participants with sporadic small vessel disease and CADASIL. This trial is registered at ClinicalTrials.gov, NCT03082014, and EudraCT, 2016-002920-10, and is terminated. FINDINGS: Between Feb 22, 2018, and April 28, 2022, 75 participants with sporadic small vessel disease (mean age 64·9 years [SD 9·9]) and 26 with CADASIL (53·1 years [7·0]) were enrolled and randomly assigned to treatment. 79 participants (62 with sporadic small vessel disease and 17 with CADASIL) entered the primary efficacy analysis. Change in CVR did not differ between study drugs in participants with sporadic small vessel disease (mean change in CVR 1·8â×â10-4%/mm Hg [SE 20·1; 95% CI -37·6 to 41·2] for amlodipine; 16·7â×â10-4%/mm Hg [20·0; -22·3 to 55·8] for losartan; -7·1â×â10-4%/mm Hg [19·6; -45·5 to 31·1] for atenolol; poverall=0·39) but did differ in patients with CADASIL (15·7â×â10-4%/mm Hg [SE 27·5; 95% CI -38·3 to 69·7] for amlodipine; 19·4â×â10-4%/mm Hg [27·9; -35·3 to 74·2] for losartan; -23·9â×â10-4%/mm Hg [27·5; -77·7 to 30·0] for atenolol; poverall=0·019). In patients with CADASIL, pairwise comparisons showed that CVR improved with amlodipine compared with atenolol (-39·6 ×â10-4%/mm Hg [95% CI -72·5 to -6·6; p=0·019) and with losartan compared with atenolol (-43·3 ×â10-4%/mm Hg [-74·3 to -12·3]; p=0·0061). No deaths occurred. Two serious adverse events were recorded, one while taking amlodipine (diarrhoea with dehydration) and one while taking atenolol (fall with fracture), neither of which was related to study drug intake. INTERPRETATION: 4 weeks of treatment with amlodipine, losartan, or atenolol did not differ in their effects on cerebrovascular reactivity in people with sporadic small vessel disease but did result in differential treatment effects in patients with CADASIL. Whether antihypertensive drug classes differentially affect clinical outcomes in people with small vessel diseases requires further research. FUNDING: EU Horizon 2020 programme.
Asunto(s)
CADASIL , Hipertensión , Humanos , Persona de Mediana Edad , Anciano , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Presión Sanguínea , Losartán/farmacología , Losartán/uso terapéutico , Atenolol/farmacología , Atenolol/uso terapéutico , CADASIL/tratamiento farmacológico , Estudios Cruzados , Resultado del Tratamiento , Hipertensión/tratamiento farmacológico , Amlodipino/farmacología , Amlodipino/uso terapéutico , Método Doble CiegoRESUMEN
PURPOSE: To investigate if network thresholding and raw data harmonization improve consistency of diffusion MRI (dMRI)-based brain networks while also increasing precision and sensitivity to detect disease effects in multicentre datasets. METHODS: Brain networks were reconstructed from dMRI of five samples with cerebral small vessel disease (SVD; 629 patients, 166 controls), as a clinically relevant exemplar condition for studies on network integrity. We evaluated consistency of network architecture in age-matched controls, by calculating cross-site differences in connection probability and fractional anisotropy (FA). Subsequently we evaluated precision and sensitivity to disease effects by identifying connections with low FA in sporadic SVD patients relative to controls, using more severely affected patients with a pure form of genetically defined SVD as reference. RESULTS: In controls, thresholding and harmonization improved consistency of network architecture, minimizing cross-site differences in connection probability and FA. In patients relative to controls, thresholding improved precision to detect disrupted connections by removing false positive connections (precision, before: 0.09-0.19; after: 0.38-0.70). Before harmonization, sensitivity was low within individual sites, with few connections surviving multiple testing correction (k = 0-25 connections). Harmonization and pooling improved sensitivity (k = 38), while also achieving higher precision when combined with thresholding (0.97). CONCLUSION: We demonstrated that network consistency, precision and sensitivity to detect disease effects in SVD are improved by thresholding and harmonization. We recommend introducing these techniques to leverage large existing multicentre datasets to better understand the impact of disease on brain networks.
Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Sustancia Blanca , Humanos , Imagen de Difusión Tensora , Vías Nerviosas , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagenRESUMEN
Cerebral cortical microinfarcts (CMI) are small ischemic lesions that are associated with cognitive impairment and probably have multiple etiologies. Cerebral hypoperfusion has been proposed as a causal factor. We studied CMI in patients with internal carotid artery (ICA) occlusion, as a model for cerebral hemodynamic compromise. We included 95 patients with a complete ICA occlusion (age 66.2 ± 8.3, 22% female) and 125 reference participants (age 65.5 ± 7.4, 47% female). Participants underwent clinical, neuropsychological, and 3 T brain MRI assessment. CMI were more common in patients with an ICA occlusion (54%, median 2, range 1-33) than in the reference group (6%, median 0; range 1-7; OR 14.3; 95% CI 6.2-33.1; p<.001). CMI were more common ipsilateral to the occlusion than in the contralateral hemisphere (median 2 and 0 respectively; p<.001). In patients with CMI compared to patients without CMI, the number of additional occluded or stenosed cervical arteries was higher (p=.038), and cerebral blood flow was lower (B -6.2 ml/min/100 ml; 95% CI -12.0:-0.41; p=.036). In conclusion, CMI are common in patients with an ICA occlusion, particularly in the hemisphere of the occluded ICA. CMI burden was related to the severity of cervical arterial compromise, supporting a role of hemodynamics in CMI etiology.
Asunto(s)
Enfermedades de las Arterias Carótidas/complicaciones , Arteria Carótida Interna/diagnóstico por imagen , Estenosis Carotídea/fisiopatología , Circulación Cerebrovascular/fisiología , Anciano , Enfermedades de las Arterias Carótidas/fisiopatología , Femenino , Humanos , Masculino , Factores de RiesgoRESUMEN
OBJECTIVES: Acquisition-related differences in diffusion magnetic resonance imaging (dMRI) hamper pooling of multicentre data to achieve large sample sizes. A promising solution is to harmonize the raw diffusion signal using rotation invariant spherical harmonic (RISH) features, but this has not been tested in elderly subjects. Here we aimed to establish if RISH harmonization effectively removes acquisition-related differences in multicentre dMRI of elderly subjects with cerebral small vessel disease (SVD), while preserving sensitivity to disease effects. METHODS: Five cohorts of patients with SVD (N = 397) and elderly controls (N = 175) with 3 Tesla MRI on different systems were included. First, to establish effectiveness of harmonization, the RISH method was trained with data of 13 to 15 age and sex-matched controls from each site. Fractional anisotropy (FA) and mean diffusivity (MD) were compared in matched controls between sites using tract-based spatial statistics (TBSS) and voxel-wise analysis, before and after harmonization. Second, to assess sensitivity to disease effects, we examined whether the contrast (effect sizes of FA, MD and peak width of skeletonized MD - PSMD) between patients and controls within each site remained unaffected by harmonization. Finally, we evaluated the association between white matter hyperintensity (WMH) burden, FA, MD and PSMD using linear regression analyses both within individual cohorts as well as with pooled scans from multiple sites, before and after harmonization. RESULTS: Before harmonization, significant differences in FA and MD were observed between matched controls of different sites (p < 0.05). After harmonization these site-differences were removed. Within each site, RISH harmonization did not alter the effect sizes of FA, MD and PSMD between patients and controls (relative change in Cohen's d = 4 %) nor the strength of association with WMH volume (relative change in R2 = 2.8 %). After harmonization, patient data of all sites could be aggregated in a single analysis to infer the association between WMH volume and FA (R2 = 0.62), MD (R2 = 0.64), and PSMD (R2 = 0.60). CONCLUSIONS: We showed that RISH harmonization effectively removes acquisition-related differences in dMRI of elderly subjects while preserving sensitivity to SVD-related effects. This study provides proof of concept for future multicentre SVD studies with pooled datasets.
Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Sustancia Blanca , Anciano , Anisotropía , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética , Análisis de RegresiónRESUMEN
Background: Cerebral small vessel diseases (SVDs) are a major cause of stroke and dementia. Yet, specific treatment strategies are lacking in part because of a limited understanding of the underlying disease processes. There is therefore an urgent need to study SVDs at their core, the small vessels themselves. Objective: This paper presents the rationale and design of the ZOOM@SVDs study, which aims to establish measures of cerebral small vessel dysfunction on 7T MRI as novel disease markers of SVDs. Methods: ZOOM@SVDs is a prospective observational cohort study with two years follow-up. ZOOM@SVDs recruits participants with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL, N = 20), sporadic SVDs (N = 60), and healthy controls (N = 40). Participants undergo 7T brain MRI to assess different aspects of small vessel function including small vessel reactivity, cerebral perforating artery flow, and pulsatility. Extensive work-up at baseline and follow-up further includes clinical and neuropsychological assessment as well as 3T brain MRI to assess conventional SVD imaging markers. Measures of small vessel dysfunction are compared between patients and controls, and related to the severity of clinical and conventional MRI manifestations of SVDs. Discussion: ZOOM@SVDs will deliver novel markers of cerebral small vessel function in patients with monogenic and sporadic forms of SVDs, and establish their relation with disease burden and progression. These small vessel markers can support etiological studies in SVDs and may serve as surrogate outcome measures in future clinical trials to show target engagement of drugs directed at the small vessels.