RESUMEN
BACKGROUND AND AIMS: Secretin (SCT) and secretin receptor (SR, only expressed on cholangiocytes within the liver) play key roles in modulating liver phenotypes. Forkhead box A2 (FoxA2) is required for normal bile duct homeostasis by preventing the excess of cholangiocyte proliferation. Short-term administration of the SR antagonist (SCT 5-27) decreased ductular reaction and liver fibrosis in bile duct ligated and Mdr2 -/- [primary sclerosing cholangitis (PSC), model] mice. We aimed to evaluate the effectiveness and risks of long-term SCT 5-27 treatment in Mdr2 -/- mice. APPROACH AND RESULTS: In vivo studies were performed in male wild-type and Mdr2 -/- mice treated with saline or SCT 5-27 for 3 months and human samples from late-stage PSC patients and healthy controls. Compared with controls, biliary SCT/SR expression and SCT serum levels increased in Mdr2 -/- mice and late-stage PSC patients. There was a significant increase in ductular reaction, biliary senescence, liver inflammation, angiogenesis, fibrosis, biliary expression of TGF-ß1/VEGF-A axis, and biliary phosphorylation of protein kinase A and ERK1/2 in Mdr2 -/- mice. The biliary expression of miR-125b and FoxA2 decreased in Mdr2 -/- compared with wild-type mice, which was reversed by long-term SCT 5-27 treatment. In vitro , SCT 5-27 treatment of a human biliary PSC cell line decreased proliferation and senescence and SR/TGF-ß1/VEGF-A axis but increased the expression of miR-125b and FoxA2. Downregulation of FoxA2 prevented SCT 5-27-induced reduction in biliary damage, whereas overexpression of FoxA2 reduced proliferation and senescence in the human PSC cell line. CONCLUSIONS: Modulating the SCT/SR axis may be critical for managing PSC.
Asunto(s)
Colangitis Esclerosante , MicroARNs , Humanos , Masculino , Ratones , Animales , Secretina/farmacología , Secretina/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor A de Crecimiento Endotelial Vascular , Colangitis Esclerosante/genética , Cirrosis Hepática/metabolismo , Hígado/patología , Ratones Noqueados , MicroARNs/metabolismo , Modelos Animales de EnfermedadRESUMEN
BACKGROUND AND AIMS: NAFLD is characterized by steatosis, hepatic inflammation, and fibrosis, which can develop into NASH. Patients with NAFLD/NASH have increased ductular reaction (DR) and biliary senescence. High fat/high cholesterol diet feeding increases biliary senescence, DR, and biliary insulin-like growth factor-1 (IGF-1) expression in mice. p16/IGF-1 converges with fork-head box transcription factor O1 (FOXO1) through E2F1. We evaluated p16 inhibition on NAFLD phenotypes and biliary E2F1/FOXO1/IGF-1 signaling. APPROACH AND RESULTS: 4-week wild-type (C57BL/6J) male mice were fed a control diet (CD) or high fat/high cholesterol diet and received either p16 or control Vivo Morpholino (VM) by tail vein injection 2× during the 16th week of feeding. We confirmed p16 knockdown and examined: (i) NAFLD phenotypes; (ii) DR and biliary senescence; (iii) serum metabolites; and (iv) biliary E2F1/FOXO1/IGF-1 signaling. Human normal, NAFLD, and NASH liver samples and isolated cholangiocytes treated with control or p16 VM were evaluated for p16/E2F1/FOXO1/IGF-1 signaling. p16 VM treatment reduced cholangiocyte and hepatocyte p16. In wild-type high fat/high cholesterol diet mice with control VM, there were increased (i) NAFLD phenotypes; (ii) DR and biliary senescence; (iii) serum metabolites; and (iv) biliary E2F1/FOXO1/IGF-1 signaling; however, p16 VM treatment reduced these parameters. Biliary E2F1/FOX-O1/IGF-1 signaling increased in human NAFLD/NASH but was blocked by p16 VM. In vitro , p16 VM reduced biliary E2f1 and Foxo1 transcription by inhibiting RNA pol II binding and E2F1 binding at the Foxo1 locus, respectively. Inhibition of E2F1 reduced biliary FOXO1 in vitro. CONCLUSION: Attenuating hepatic p16 expression may be a therapeutic approach for improving NAFLD/NASH phenotypes.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Masculino , Ratones , Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Proteína Forkhead Box O1 , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fenotipo , Inhibidor p16 de la Quinasa Dependiente de CiclinaRESUMEN
BACKGROUND & AIMS: Primary biliary cholangitis (PBC) is characterised by ductopenia, ductular reaction, impairment of anion exchanger 2 (AE2) and the 'bicarbonate umbrella'. Ductulo-canalicular junction (DCJ) derangement is hypothesised to promote PBC progression. The secretin (Sct)/secretin receptor (SR) axis regulates cystic fibrosis transmembrane receptor (CFTR) and AE2, thus promoting choleresis. We evaluated the role of Sct/SR signalling on biliary secretory processes and subsequent injury in a late-stage PBC mouse model and human samples. METHODS: At 32 weeks of age, female and male wild-type and dominant-negative transforming growth factor beta receptor II (late-stage PBC model) mice were treated with Sct for 1 or 8 weeks. Bulk RNA-sequencing was performed in isolated cholangiocytes from mouse models. RESULTS: Biliary Sct/SR/CFTR/AE2 expression and bile bicarbonate levels were reduced in late-stage PBC mouse models and human samples. Sct treatment decreased bile duct loss, ductular reaction, inflammation, and fibrosis in late-stage PBC models. Sct reduced hepatic bile acid levels, modified bile acid composition, and restored the DCJ and 'bicarbonate umbrella'. RNA-sequencing identified that Sct promoted mature epithelial marker expression, specifically anterior grade protein 2 (Agr2). Late-stage PBC models and human samples exhibited reduced biliary mucin 1 levels, which were enhanced by Sct treatment. CONCLUSION: Loss of Sct/SR signalling in late-stage PBC results in a faulty 'bicarbonate umbrella' and reduced Agr2-mediated mucin production. Sct restores cholangiocyte secretory processes and DCJ formation through enhanced mature cholangiocyte phenotypes and bile duct growth. Sct treatment may be beneficial for individuals with late-stage PBC. IMPACT AND IMPLICATIONS: Secretin (Sct) regulates biliary proliferation and bicarbonate secretion in cholangiocytes via its receptor, SR, and in mouse models and human samples of late-stage primary biliary cholangitis (PBC), the Sct/SR axis is blunted along with loss of the protective 'bicarbonate umbrella'. We found that both short- and long-term Sct treatment ameliorated ductular reaction, immune cell influx, and liver fibrosis in late-stage PBC mouse models. Importantly, Sct treatment promoted bicarbonate and mucin secretion and hepatic bile acid efflux, thus reducing cholestatic and toxic bile acid-associated injury in late-stage PBC mouse models. Our work perpetuates the hypothesis that PBC pathogenesis hinges on secretory defects, and restoration of secretory processes that promote the 'bicarbonate umbrella' may be important for amelioration of PBC-associated damage.
Asunto(s)
Cirrosis Hepática Biliar , Secretina , Masculino , Femenino , Humanos , Ratones , Animales , Recién Nacido , Secretina/metabolismo , Cirrosis Hepática Biliar/metabolismo , Bicarbonatos/metabolismo , Vías Secretoras , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Conductos Biliares/metabolismo , Antiportadores de Cloruro-Bicarbonato/metabolismo , Ácidos y Sales Biliares/metabolismo , ARN/metabolismo , Mucinas/metabolismo , Mucoproteínas/metabolismo , Proteínas Oncogénicas/metabolismoRESUMEN
BACKGROUND & AIMS: Common precursors for the liver, biliary tree, and pancreas exist at an early stage of development in the definitive endoderm forming the foregut. We have identified and characterised endodermal stem/progenitor cells with regenerative potential persisting in the adult human duodenum. METHODS: Human duodena were obtained from organ donors, and duodenal submucosal gland cells were isolated after removal of the mucosa layer. Cells were cultured on plastic or as organoids and were transplanted into severe combined immunodeficient (SCID) mouse livers. RESULTS: In situ studies of submucosal glands in the human duodenum revealed cells expressing stem/progenitor cell markers that had unique phenotypic traits distinguishable from intestinal crypt cells. Genetic signature studies indicated that the cells are closer to biliary tree stem cells and to definitive endodermal cells than to adult hepatocytes, supporting the interpretation that they are endodermal stem/progenitor cells. In vitro, human duodenal submucosal gland cells demonstrated clonal growth, capability to form organoids, and ability to acquire functional hepatocyte traits. In vivo, transplanted cells engrafted into the livers of immunocompromised mice and differentiated to mature liver cells. In an experimental model of fatty liver, human duodenal submucosal gland cells were able to rescue hosts from liver damage by supporting repopulation and regeneration of the liver. CONCLUSIONS: A cell population with clonal growth and organoid formation capability, which has liver differentiation potency in vitro and in vivo in murine experimental models, is present within adult duodenal submucosal glands. These cells can be isolated, do not require reprogramming, and thus could potentially represent a novel cell source for regenerative medicine of the liver. IMPACT AND IMPLICATIONS: Cell therapies for liver disease could represent an option to support liver function, but the identification of sustainable and viable cell sources is critical. Here, we describe a cell population with organoid formation capability and liver-specific regenerative potential in submucosal glands of the human duodenum. Duodenal submucosal gland cells are isolated from adult organs, do not require reprogramming, and could rescue hepatocellular damage in preclinical models of chronic, but not acute, liver injury. Duodenal submucosal gland cells could represent a potential candidate cell source for regenerative medicine of the liver, but the determination of cell dose and toxicity is needed before clinical testing in humans.
Asunto(s)
Sistema Biliar , Hiperplasia Nodular Focal , Adulto , Humanos , Ratones , Animales , Ratones SCID , Regeneración Hepática , Hepatocitos , Hígado/lesiones , Diferenciación CelularRESUMEN
Primary sclerosing cholangitis (PSC) is characterized by increased ductular reaction (DR), liver fibrosis, hepatic total bile acid (TBA) levels, and mast cell (MC) infiltration. Apical sodium BA transporter (ASBT) expression increases in cholestasis, and ileal inhibition reduces PSC phenotypes. FVB/NJ and multidrug-resistant 2 knockout (Mdr2-/-) mice were treated with control or ASBT Vivo-Morpholino (VM). We measured 1) ASBT expression and MC presence in liver/ileum; 2) liver damage/DR; 3) hepatic fibrosis/inflammation; 4) biliary inflammation/histamine serum content; and 5) gut barrier integrity/hepatic bacterial translocation. TBA/BA composition was measured in cholangiocyte/hepatocyte supernatants, intestine, liver, serum, and feces. Shotgun analysis was performed to ascertain microbiome changes. In vitro, cholangiocytes were treated with BAs ± ASBT VM, and histamine content and farnesoid X receptor (FXR) signaling were determined. Treated cholangiocytes were cocultured with MCs, and FXR signaling, inflammation, and MC activation were measured. Human patients were evaluated for ASBT/MC expression and histamine/TBA content in bile. Control patient- and PSC patient-derived three-dimensional (3-D) organoids were generated; ASBT, chymase, histamine, and fibroblast growth factor-19 (FGF19) were evaluated. ASBT VM in Mdr2-/- mice decreased 1) biliary ASBT expression, 2) PSC phenotypes, 3) hepatic TBA, and 4) gut barrier integrity compared with control. We found alterations between wild-type (WT) and Mdr2-/- mouse microbiome, and ASBT/MC and bile histamine content increased in cholestatic patients. BA-stimulated cholangiocytes increased MC activation/FXR signaling via ASBT, and human PSC-derived 3-D organoids secrete histamine/FGF19. Inhibition of hepatic ASBT ameliorates cholestatic phenotypes by reducing cholehepatic BA signaling, biliary inflammation, and histamine levels. ASBT regulation of hepatic BA signaling offers a therapeutic avenue for PSC.NEW & NOTEWORTHY We evaluated knockdown of the apical sodium bile acid transporter (ASBT) using Vivo-Morpholino in Mdr2KO mice. ASBT inhibition decreases primary sclerosing cholangitis (PSC) pathogenesis by reducing hepatic mast cell infiltration, altering bile acid species/cholehepatic shunt, and regulating gut inflammation/dysbiosis. Since a large cohort of PSC patients present with IBD, this study is clinically important. We validated findings in human PSC and PSC-IBD along with studies in novel human 3-D organoids formed from human PSC livers.
Asunto(s)
Colangitis Esclerosante , Colestasis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Colangitis Esclerosante/tratamiento farmacológico , Colangitis Esclerosante/genética , Colangitis Esclerosante/patología , Ácidos y Sales Biliares , Histamina , Morfolinos/uso terapéutico , Hígado/metabolismo , Colestasis/patología , Cirrosis Hepática/patología , Inflamación/patología , Proteínas de Transporte de Membrana , Enfermedades Inflamatorias del Intestino/patologíaRESUMEN
BACKGROUND AND AIMS: Melatonin reduces biliary damage and liver fibrosis in cholestatic models by interaction with melatonin receptors 1A (MT1) and 1B (MT2). MT1 and MT2 can form heterodimers and homodimers, but MT1 and MT2 can heterodimerize with the orphan receptor G protein-coupled receptor 50 (GPR50). MT1/GPR50 dimerization blocks melatonin binding, but MT2/GPR50 dimerization does not affect melatonin binding. GPR50 can dimerize with TGFß receptor type I (TGFßRI) to activate this receptor. We aimed to determine the differential roles of MT1 and MT2 during cholestasis. APPROACH AND RESULTS: Wild-type (WT), MT1 knockout (KO), MT2KO, and MT1/MT2 double KO (DKO) mice underwent sham or bile duct ligation (BDL); these mice were also treated with melatonin. BDL WT and multidrug resistance 2 KO (Mdr2-/- ) mice received mismatch, MT1, or MT2 Vivo-Morpholino. Biliary expression of MT1 and GPR50 increases in cholestatic rodents and human primary sclerosing cholangitis (PSC) samples. Loss of MT1 in BDL and Mdr2-/- mice ameliorated biliary and liver damage, whereas these parameters were enhanced following loss of MT2 and in DKO mice. Interestingly, melatonin treatment alleviated BDL-induced biliary and liver injury in BDL WT and BDL MT2KO mice but not in BDL MT1KO or BDL DKO mice, demonstrating melatonin's interaction with MT1. Loss of MT2 or DKO mice exhibited enhanced GPR50/TGFßR1 signaling, which was reduced by loss of MT1. CONCLUSIONS: Melatonin ameliorates liver phenotypes through MT1, whereas down-regulation of MT2 promotes liver damage through GPR50/TGFßR1 activation. Blocking GPR50/TGFßR1 binding through modulation of melatonin signaling may be a therapeutic approach for PSC.
Asunto(s)
Colestasis , Melatonina , Animales , Colestasis/complicaciones , Colestasis/tratamiento farmacológico , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/etiología , Melatonina/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Ratones , Ratones Noqueados , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/genética , Receptor de Melatonina MT2/metabolismoRESUMEN
BACKGROUND AND AIMS: Nonanastomotic biliary strictures (NAS) are a major cause of morbidity after orthotopic liver transplantation (OLT). Although ischemic injury of peribiliary glands (PBGs) and peribiliary vascular plexus during OLT has been associated with the later development of NAS, the exact underlying mechanisms remain unclear. We hypothesized that bile ducts of patients with NAS suffer from ongoing biliary hypoxia and lack of regeneration from PBG stem/progenitor cells. APPROACH AND RESULTS: Forty-two patients, requiring retransplantation for either NAS (n = 18), hepatic artery thrombosis (HAT; n = 13), or nonbiliary graft failure (controls; n = 11), were included in this study. Histomorphological analysis of perihilar bile ducts was performed to assess differences in markers of cell proliferation and differentiation in PBGs, microvascular density (MVD), and hypoxia. In addition, isolated human biliary tree stem cells (hBTSCs) were used to examine exo-metabolomics during in vitro differentiation toward mature cholangiocytes. Bile ducts of patients with NAS or HAT had significantly reduced indices of PBG mass, cellular proliferation and differentiation (mucus production, secretin receptor expression, and primary cilia), reduced MVD, and increased PBG apoptosis and hypoxia marker expression, compared to controls. Metabolomics of hBTSCs during in vitro differentiation toward cholangiocytes revealed a switch from a glycolytic to oxidative metabolism, indicating the need for oxygen. CONCLUSIONS: NAS are characterized by a microscopic phenotype of chronic biliary hypoxia attributed to loss of microvasculature, resulting in reduced proliferation and differentiation of PBG stem/progenitor cells into mature cholangiocytes. These findings suggest that persistent biliary hypoxia is a key mechanism underlying the development of NAS after OLT.
Asunto(s)
Sistema Biliar , Colestasis , Trasplante de Hígado , Conductos Biliares , Constricción Patológica/etiología , Humanos , HipoxiaRESUMEN
The progression of nonalcoholic fatty liver disease (NAFLD) is associated with alterations of the gut-liver axis. The activation of toll-like receptor 4 (TLR4) pathways by endotoxins, such as lipopolysaccharide (LPS), contributes to liver injury. The aim of the present study was to evaluate the possible beneficial effects of a calcium-sulphate-bicarbonate natural mineral water on the gut-liver axis by evaluating liver and terminal ileum histopathology in a murine model of NAFLD. NAFLD was induced in mice by administrating a methionine-choline-deficient (MCD) diet. The following experimental groups were evaluated: controls (N = 10); MCD+Tap water (MCD; N = 10); MCD+Calcium-sulphate-bicarbonate water (MCD/Wcsb; N = 10). Mice were euthanised after 4 and 8 weeks. Liver and terminal ileum samples were collected. Samples were studied by histomorphology, immunohistochemistry, and immunofluorescence. In mice subjected to the MCD diet, treatment with mineral water improved inflammation and fibrosis, and was associated with a reduced number of activated hepatic stellate cells when compared to MCD mice not treated with mineral water. Moreover, MCD/Wcsb mice showed lower liver LPS localization and less activation of TLR4 pathways compared to the MCD. Finally, Wcsb treatment was associated with improved histopathology and higher occludin positivity in intestinal mucosa. In conclusion, calcium-sulphate-bicarbonate water may exert modulatory activity on the gut-liver axis in MCD mice, suggesting potential beneficial effects on NAFLD.
Asunto(s)
Deficiencia de Colina , Aguas Minerales , Enfermedad del Hígado Graso no Alcohólico , Animales , Bicarbonatos/metabolismo , Calcio/metabolismo , Sulfato de Calcio , Colina/metabolismo , Deficiencia de Colina/complicaciones , Deficiencia de Colina/metabolismo , Modelos Animales de Enfermedad , Lipopolisacáridos/metabolismo , Hígado/metabolismo , Metionina/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Sulfatos/metabolismo , Receptor Toll-Like 4/metabolismoRESUMEN
Activation of the substance P (SP)/neurokinin 1 receptor (NK1R) axis triggers biliary damage/senescence and liver fibrosis in bile duct ligated and Mdr2-/- (alias Abcb4-/-) mice through enhanced transforming growth factor-ß1 (TGF-ß1) biliary secretion. Recent evidence indicates a role for miR-31 (MIR31) in TGF-ß1-induced liver fibrosis. We aimed to define the role of the SP/NK1R/TGF-ß1/miR-31 axis in regulating biliary proliferation and liver fibrosis during cholestasis. Thus, we generated a novel model with double knockout of Mdr2-/- and NK1R-/ (alias Tacr1-/-) to further address the role of the SP/NK1R axis during chronic cholestasis. In vivo studies were performed in the following 12-week-old male mice: (i) NK1R-/-; (ii) Mdr2-/-; and (iii) NK1R-/-/Mdr2-/- (Tacr1-/-/Abcb4-/-) and their corresponding wild-type controls. Liver tissues and cholangiocytes were collected, and liver damage, changes in biliary mass/senescence, and inflammation as well as liver fibrosis were evaluated by both immunohistochemistry in liver sections and real-time PCR. miR-31 expression was measured by real-time PCR in isolated cholangiocytes. Decreased ductular reaction, liver fibrosis, biliary senescence, and biliary inflammation were observed in NK1R-/-/Mdr2-/- mice compared with Mdr2-/- mice. Elevated expression of miR-31 was observed in Mdr2-/- mice, which was reduced in NK1R-/-/Mdr2-/- mice. Targeting the SP/NK1R and/or miR-31 may be a potential approach in treating human cholangiopathies, including primary sclerosing cholangitis.
Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/deficiencia , Conductos Biliares , Colangitis Esclerosante , Cirrosis Hepática , Receptores de Neuroquinina-1/deficiencia , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Conductos Biliares/lesiones , Conductos Biliares/metabolismo , Conductos Biliares/patología , Colangitis Esclerosante/genética , Colangitis Esclerosante/metabolismo , Colangitis Esclerosante/patología , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones Noqueados , Receptores de Neuroquinina-1/metabolismo , Miembro 4 de la Subfamilia B de Casete de Unión a ATPRESUMEN
BACKGROUND AND AIMS: Mechanisms underlying the repair of extrahepatic biliary tree (EHBT) after injury have been scarcely explored. The aims of this study were to evaluate, by using a lineage tracing approach, the contribution of peribiliary gland (PBG) niche in the regeneration of EHBT after damage and to evaluate, in vivo and in vitro, the signaling pathways involved. APPROACH AND RESULTS: Bile duct injury was induced by the administration of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet for 14 days to Krt19Cre TdTomatoLSL mice. Human biliary tree stem/progenitor cells (BTSC) within PBGs were isolated from EHBT obtained from liver donors. Hepatic duct samples (n = 10) were obtained from patients affected by primary sclerosing cholangitis (PSC). Samples were analyzed by histology, immunohistochemistry, western blotting, and polymerase chain reaction. DDC administration causes hyperplasia of PBGs and periductal fibrosis in EHBT. A PBG cell population (Cytokeratin19- /SOX9+ ) is involved in the renewal of surface epithelium in injured EHBT. The Wnt signaling pathway triggers human BTSC proliferation in vitro and influences PBG hyperplasia in vivo in the DDC-mediated mouse biliary injury model. The Notch signaling pathway activation induces BTSC differentiation in vitro toward mature cholangiocytes and is associated with PBG activation in the DDC model. In human PSC, inflammatory and stromal cells trigger PBG activation through the up-regulation of the Wnt and Notch signaling pathways. CONCLUSIONS: We demonstrated the involvement of PBG cells in regenerating the injured biliary epithelium and identified the signaling pathways driving BTSC activation. These results could have relevant implications on the pathophysiology and treatment of cholangiopathies.
Asunto(s)
Sistema Biliar/fisiopatología , Colangitis Esclerosante/fisiopatología , Regeneración/fisiología , Nicho de Células Madre/fisiología , Adulto , Anciano , Animales , Sistema Biliar/citología , Diferenciación Celular , Colangitis Esclerosante/terapia , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Piridinas/toxicidad , Receptores Notch/fisiología , Vía de Señalización Wnt/fisiologíaRESUMEN
BACKGROUND AND AIMS: Lipopolysaccharides (LPS) is increased in nonalcoholic fatty liver disease (NAFLD), but its relationship with liver inflammation is not defined. APPROACH AND RESULTS: We studied Escherichia coli LPS in patients with biopsy-proven NAFLD, 25 simple steatosis (nonalcoholic fatty liver) and 25 nonalcoholic steatohepatitis (NASH), and in mice with diet-induced NASH. NASH patients had higher serum LPS and hepatocytes LPS localization than controls, which was correlated with serum zonulin and phosphorylated nuclear factor-κB expression. Toll-like receptor 4 positive (TLR4+ ) macrophages were higher in NASH than simple steatosis or controls and correlated with serum LPS. NASH biopsies showed a higher CD61+ platelets, and most of them were TLR4+ . TLR4+ platelets correlated with serum LPS values. In mice with NASH, LPS serum levels and LPS hepatocyte localization were increased compared with control mice and associated with nuclear factor-κB activation. Mice on aspirin developed lower fibrosis and extent compared with untreated ones. Treatment with TLR4 inhibitor resulted in lower liver inflammation in mice with NASH. CONCLUSIONS: In NAFLD, Escherichia coli LPS may increase liver damage by inducing macrophage and platelet activation through the TLR4 pathway.
Asunto(s)
Lipopolisacáridos/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Modelos Animales de Enfermedad , Escherichia coli , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
OBJECTIVE: To evaluate the histopathologic modifications in liver and visceral adipose tissue (VAT), and to correlate these changes with clinical measures, adipokine production, and proinflammatory cytokines in a population of adolescents with obesity with nonalcoholic fatty liver disease (NAFLD) who underwent laparoscopic sleeve gastrectomy (LSG). STUDY DESIGN: Twenty adolescents with obesity who underwent LSG and with biopsy-proven NAFLD were included. Patients underwent clinical evaluation and blood tests at baseline and 1 year after the surgical procedure. Liver and VAT specimens were processed for routine histology, immunohistochemistry, and immunofluorescence. RESULTS: In adolescents with obesity and NAFLD, hepatic histologic alterations were uncorrelated with VAT inflammation. LSG induced in both liver and VAT tissue histopathology amelioration and macrophage profile modification that were correlated with body mass index and improvement in insulin resistance. The adipokine profile in liver and VAT was associated with weight loss and histologic improvement after LSG. Serum proinflammatory cytokines were correlated with liver and VAT histopathology and IL-1ß and IL-6 levels were independently predicted by liver necroinflammatory grade. CONCLUSIONS: This study suggests a unique adipose tissue/fatty liver crosstalk in pediatric patients. LSG induces a similar pattern of histologic improvement in the liver and in VAT. Besides VAT, our results strengthen the role of the liver in adipocytokine production and its contribution to systemic inflammation in pediatric patients with NAFLD.
Asunto(s)
Gastrectomía/métodos , Grasa Intraabdominal/patología , Laparoscopía , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad Infantil/cirugía , Adipoquinas/biosíntesis , Adolescente , Correlación de Datos , Femenino , Humanos , Grasa Intraabdominal/metabolismo , Hígado/metabolismo , Macrófagos , Masculino , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Obesidad Infantil/complicaciones , Estudios ProspectivosRESUMEN
Primary biliary cholangitis (PBC) primarily targets cholangiocytes and is characterized by liver fibrosis and biliary proliferation. Activation of the secretin (Sct)/secretin receptor (SR) axis, expressed only by cholangiocytes, increases biliary proliferation, liver fibrosis, and bicarbonate secretion. We evaluated the effectiveness of SR antagonist treatment for early-stage PBC. Male and female dominant-negative TGF-ß receptor II (dnTGF-ßRII) (model of PBC) and wild-type mice at 12 wk of age were treated with saline or the SR antagonist, Sec 5-27, for 1 wk. dnTGF-ßRII mice expressed features of early-stage PBC along with enhanced Sct/SR axis activation and Sct secretion. dnTGF-ßRII mice had increased biliary proliferation or senescence, inflammation, and liver fibrosis. In dnTGF-ßRII mice, there was increased microRNA-125b/TGF-ß1/TGF-ß receptor 1/VEGF-A signaling. Human early-stage PBC patients had an increase in hepatobiliary Sct and SR expression and serum Sct levels. Increased biliary Sct/SR signaling promotes biliary and hepatic damage during early-stage PBC.-Kennedy, L., Francis, H., Invernizzi, P., Venter, J., Wu, N., Carbone, M., Gershwin, M. E., Bernuzzi, F., Franchitto, A., Alvaro, D., Marzioni, M., Onori, P., Gaudio, E., Sybenga, A., Fabris, L., Meng, F., Glaser, S., Alpini, G. Secretin/secretin receptor signaling mediates biliary damage and liver fibrosis in early-stage primary biliary cholangitis.
Asunto(s)
Enfermedades de las Vías Biliares/patología , Inflamación/patología , Cirrosis Hepática Biliar/complicaciones , Cirrosis Hepática/patología , Receptor Tipo II de Factor de Crecimiento Transformador beta/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de la Hormona Gastrointestinal/metabolismo , Secretina/metabolismo , Animales , Enfermedades de las Vías Biliares/etiología , Enfermedades de las Vías Biliares/metabolismo , Estudios de Casos y Controles , Femenino , Humanos , Inflamación/etiología , Inflamación/metabolismo , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Cirrosis Hepática Biliar/metabolismo , Cirrosis Hepática Biliar/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Receptores de la Hormona Gastrointestinal/genética , Secretina/genética , Transducción de Señal , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
Circadian rhythms and clock gene expressions are regulated by the suprachiasmatic nucleus in the hypothalamus, and melatonin is produced in the pineal gland. Although the brain detects the light through retinas and regulates rhythms and melatonin secretion throughout the body, the liver has independent circadian rhythms and expressions as well as melatonin production. Previous studies indicate the association between circadian rhythms with various liver diseases, and disruption of rhythms or clock gene expression may promote liver steatosis, inflammation, or cancer development. It is well known that melatonin has strong antioxidant effects. Alcohol drinking or excess fatty acid accumulation produces reactive oxygen species and oxidative stress in the liver leading to liver injuries. Melatonin administration protects these oxidative stress-induced liver damage and improves liver conditions. Recent studies have demonstrated that melatonin administration is not limited to antioxidant effects and it has various other effects contributing to the management of liver conditions. Accumulating evidence suggests that restoring circadian rhythms or expressions as well as melatonin supplementation may be promising therapeutic strategies for liver diseases. This review summarizes recent findings for the functional roles and therapeutic potentials of circadian rhythms and melatonin in liver diseases.
Asunto(s)
Ritmo Circadiano/fisiología , Hepatopatías , Melatonina/metabolismo , Animales , HumanosRESUMEN
The liver is a frontline immune site specifically designed to check and detect potential pathogens from the bloodstream to maintain a general state of immune hyporesponsiveness. One of the main functions of the liver is the regulation of iron homeostasis. The liver detects changes in systemic iron requirements and can regulate its concentration. Pathological states lead to the dysregulation of iron homeostasis which, in turn, can promote infectious and inflammatory processes. In this context, hepatic viruses deviate hepatocytes' iron metabolism in order to better replicate. Indeed, some viruses are able to alter the expression of iron-related proteins or exploit host receptors to enter inside host cells. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein belonging to the innate immunity, is endowed with potent antiviral activity, mainly related to its ability to block viral entry into host cells by interacting with viral and/or cell surface receptors. Moreover, Lf can act as an iron scavenger by both direct iron-chelation or the modulation of the main iron-related proteins. In this review, the complex interplay between viral hepatitis, iron homeostasis, and inflammation as well as the role of Lf are outlined.
Asunto(s)
Susceptibilidad a Enfermedades , Hepatitis Viral Humana/etiología , Hepatitis Viral Humana/metabolismo , Hierro/metabolismo , Animales , Transporte Biológico , Resistencia a la Enfermedad , Susceptibilidad a Enfermedades/inmunología , Homeostasis , Interacciones Huésped-Patógeno/inmunología , Humanos , Proteínas de Unión a Hierro/metabolismo , Lactoferrina/metabolismo , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Hígado/virología , Especificidad de Órganos/inmunología , Unión Proteica , Receptores de Superficie Celular/metabolismoRESUMEN
Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are human primary cholangiopathies characterized by the damage of mature cholangiocytes and by the appearance of ductular reaction (DR) as the results of hepatic progenitor cell activation. This study evaluated the differences in progenitor cell niche activation between these two cholangiopathies. Liver tissue was obtained from healthy liver donors (n = 5) and from patients with PSC (n = 20) or PBC (n = 20). DR, progenitor cell phenotype, and signaling pathways were investigated by IHC analysis and immunofluorescence. Our results indicated that DR was more extended, appeared earlier, and had a higher proliferation index in PBC compared with PSC. In PBC, DR was strongly correlated with clinical prognostic scores. A higher percentage of sex determining region Y-box (SOX)9+ and cytokeratin 19+ cells but fewer features of hepatocyte fate characterized progenitor cell activation in PBC versus PSC. Lower levels of laminin and neurogenic locus notch homolog protein 1 but higher expression of wingless-related integration site (WNT) family pathway components characterize progenitor cell niche in PSC compared with PBC. In conclusion, progenitor cell activation differs between PSC and PBC and is characterized by a divergent fate commitment and different signaling pathway predominance. In PBC, DR represents a relevant histologic prognostic marker.
Asunto(s)
Colangitis Esclerosante/patología , Cirrosis Hepática Biliar/patología , Hígado/patología , Células Madre/patología , Adulto , Proliferación Celular , Colangitis Esclerosante/metabolismo , Femenino , Humanos , Laminina/metabolismo , Hígado/metabolismo , Cirrosis Hepática Biliar/metabolismo , Masculino , Persona de Mediana Edad , Transducción de Señal/fisiología , Nicho de Células Madre/fisiología , Células Madre/metabolismoRESUMEN
Activation of the secretin (Sct)/secretin receptor (SR) axis stimulates ductular reaction and liver fibrosis, which are hallmarks of cholangiopathies. Our aim was to define the role of Sct-regulated cellular senescence, and we demonstrated that both ductular reaction and liver fibrosis are significantly reduced in Sct-/-, SR-/-, and Sct-/-/SR-/- bile duct ligated (BDL) mice compared with BDL wild-type mice. The reduction in hepatic fibrosis in Sct-/-, SR-/-, and Sct-/-/SR-/- BDL mice was accompanied by reduced transforming growth factor-ß1 levels in serum and cholangiocyte supernatant, as well as decreased expression of markers of cellular senescence in cholangiocytes in contrast to enhanced cellular senescence in hepatic stellate cells compared with BDL wild-type mice. Secretin directly stimulated the senescence of cholangiocytes and regulated, by a paracrine mechanism, the senescence of hepatic stellate cells and liver fibrosis via modulation of transforming growth factor-ß1 biliary secretion. Targeting senescent cholangiocytes may represent a novel therapeutic approach for ameliorating hepatic fibrosis during cholestatic liver injury.
Asunto(s)
Cirrosis Hepática/fisiopatología , Receptores Acoplados a Proteínas G/fisiología , Receptores de la Hormona Gastrointestinal/fisiología , Secretina/metabolismo , Factor de Crecimiento Transformador beta1/fisiología , Animales , Conductos Biliares/citología , Senescencia Celular/fisiología , Macrófagos del Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Tamaño de los Órganos , ARN Mensajero/metabolismo , Secretina/farmacologíaRESUMEN
Secretin receptor (SR), only expressed by cholangiocytes, plays a key role in the regulation of biliary damage and liver fibrosis. The aim of this study was to determine the effects of genetic depletion of SR in Mdr2-/- mice on intrahepatic biliary mass, liver fibrosis, senescence, and angiogenesis. 12 wk SR-/-, Mdr2-/-, and SR-/-/Mdr2-/- mice with corresponding wild-type mice were used for the in vivo studies. Immunohistochemistry or immunofluorescence was performed in liver sections for (i) biliary expression of SR; (ii) hematoxylin and eosin; (iii) intrahepatic biliary mass by CK-19; (iv) fibrosis by Col1a1 and α-SMA; (v) senescence by SA-ß-gal and p16; and (vi) angiogenesis by VEGF-A and CD31. Secretin (Sct) and TGF-ß1 levels were measured in serum and cholangiocyte supernatant by ELISA. In total liver, isolated cholangiocytes or HSCs, we evaluated the expression of fibrosis markers (FN-1 and Col1a1); senescence markers (p16 and CCL2); microRNA 125b and angiogenesis markers (VEGF-A, VEGFR-2, CD31, and vWF) by immunoblots and/or qPCR. In vitro, we measured the paracrine effect of cholangiocyte supernatant on the expression of senescent and fibrosis markers in human hepatic stellate cells (HHSteCs). The increased level of ductular reaction, fibrosis, and angiogenesis in Mdr2-/- mice was reduced in SR-/-/Mdr2-/- mice. Enhanced senescence levels in cholangiocytes from Mdr2-/- mice were reversed to normal in SR-/-/Mdr2-/- mice. However, senescence was decreased in HSCs from Mdr2-/- mice but returned to normal values in SR-/-/Mdr2-/- mice. In vitro treatment of HHSteCs with supernatant from cholangiocyte lacking SR (containing lower biliary levels of Sct-dependent TGF-ß1) have decreased fibrotic reaction and increased cellular senescence. Sct-induced TGF-ß1 secretion was mediated by microRNA 125b. Our data suggest that differential modulation of angiogenesis-dependent senescence of cholangiocytes and HSCs may be important for the treatment of liver fibrosis in cholangiopathies.
Asunto(s)
Senescencia Celular , Colangitis Esclerosante/metabolismo , Cirrosis Hepática/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de la Hormona Gastrointestinal/metabolismo , Secretina/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Modelos Animales de Enfermedad , Células Estrelladas Hepáticas/metabolismo , Humanos , Hígado/patología , Masculino , Ratones Noqueados , MicroARNs/metabolismo , Neovascularización Fisiológica , Comunicación Paracrina , Receptores Acoplados a Proteínas G/genética , Receptores de la Hormona Gastrointestinal/genética , Factor de Crecimiento Transformador beta1/metabolismo , Miembro 4 de la Subfamilia B de Casete de Unión a ATPRESUMEN
Hepatic fibrosis occurs during the progression of primary sclerosing cholangitis (PSC) and is characterized by accumulation of extracellular matrix proteins. Proliferating cholangiocytes and activated hepatic stellate cells (HSCs) participate in the promotion of liver fibrosis during cholestasis. Gonadotropin-releasing hormone (GnRH) is a trophic peptide hormone synthesized by hypothalamic neurons and the biliary epithelium and exerts its biological effects on cholangiocytes by interaction with the receptor subtype (GnRHR1) expressed by cholangiocytes and HSCs. Previously, we demonstrated that administration of GnRH to normal rats increased intrahepatic biliary mass (IBDM) and hepatic fibrosis. Also, miR-200b is associated with the progression of hepatic fibrosis; however, the role of the GnRH/GnRHR1/miR-200b axis in the development of hepatic fibrosis in PSC is unknown. Herein, using the mouse model of PSC (multidrug resistance gene 2 knockout), the hepatic knockdown of GnRH decreased IBDM and liver fibrosis. In vivo and in vitro administration of GnRH increased the expression of miR-200b and fibrosis markers. The GnRH/GnRHR1 axis and miR-200b were up-regulated in human PSC samples. Cetrorelix, a GnRHR1 antagonist, inhibited the expression of fibrotic genes in vitro and decreased IBDM and hepatic fibrosis in vivo. Inhibition of miR-200b decreased the expression of fibrosis genes in vitro in cholangiocyte and HSC lines. Targeting the GnRH/GnRHR1/miR-200b axis may be key for the management of hepatic fibrosis during the progression of PSC.
Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Regulación de la Expresión Génica , Hormona Liberadora de Gonadotropina/metabolismo , MicroARNs/metabolismo , Morfolinos/farmacología , Receptores LHRH/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Línea Celular , Proliferación Celular , Colestasis , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación hacia Abajo , Hormona Liberadora de Gonadotropina/genética , Células Estrelladas Hepáticas/metabolismo , Humanos , Hígado , Cirrosis Hepática , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Receptores LHRH/genética , Regulación hacia Arriba , Miembro 4 de la Subfamilia B de Casete de Unión a ATPRESUMEN
OBJECTIVES: To investigate whether the modulation of local cellular cross-talks and the modification of hepatic adipocytokine expression could mechanistically explain the improvement of liver histopathology after laparoscopic sleeve gastrectomy (LSG) in adolescents with nonalcoholic fatty liver disease (NAFLD). STUDY DESIGN: Twenty obese (body mass index of ≥35 kg/m2) adolescents who underwent LSG and with biopsy-proven NAFLD were included. At baseline (T0) and 1 year after treatment, patients underwent clinical evaluation, blood tests, and liver biopsy. Hepatic progenitor cells, hepatic stellate cells (HSCs), macrophages, and adipocytokines were evaluated by immunohistochemistry and immunofluorescence. RESULTS: Liver biopsy samples after LSG demonstrated a significant improvement of NAFLD Activity Score and fibrosis. Immunohistochemistry indicated a significant reduction of hepatocyte cell cycle arrest, ductular reaction, activated HSC, and macrophage number after LSG compared with T0. The activation state of HSC was accompanied by modification in the expression of the autophagy marker LC3. Hepatocyte expression of adiponectin was significant higher after LSG than into T0. Moreover, LSG caused decreased resistin expression in Sox9+ hepatic progenitor cells compared with T0. The number of S100A9+ macrophages was also reduced by LSG correlating with resistin expression. Finally, serum levels of proinflammatory cytokines significantly correlated with macrophages and activated HSC numbers. CONCLUSIONS: The histologic improvement induced by LSG is associated with the reduced activation of local cellular compartments (hepatic progenitor cells, HSCs, and macrophages), thus, strengthening the role of cellular interactions and hepatic adipocytokine production in the pathogenesis of NAFLD.