Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 625(7995): 489-493, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172641

RESUMEN

The quantum Hall effect is a prototypical realization of a topological state of matter. It emerges from a subtle interplay between topology, interactions and disorder1-9. The disorder enables the formation of localized states in the bulk that stabilize the quantum Hall states with respect to the magnetic field and carrier density3. Still, the details of the localized states and their contribution to transport remain beyond the reach of most experimental techniques10-31. Here we describe an extensive study of the bulk's heat conductance. Using a novel 'multiterminal' short device (on a scale of 10 µm), we separate the longitudinal thermal conductance, [Formula: see text] (owing to the bulk's contribution), from the topological transverse value [Formula: see text] by eliminating the contribution of the edge modes24. When the magnetic field is tuned away from the conductance plateau centre, the localized states in the bulk conduct heat efficiently ([Formula: see text]), whereas the bulk remains electrically insulating. Fractional states in the first excited Landau level, such as the [Formula: see text] and [Formula: see text], conduct heat throughout the plateau with a finite [Formula: see text]. We propose a theoretical model that identifies the localized states as the cause of the finite heat conductance, agreeing qualitatively with our experimental findings.

2.
Nature ; 617(7960): 277-281, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37100910

RESUMEN

Correlations of partitioned particles carry essential information about their quantumness1. Partitioning full beams of charged particles leads to current fluctuations, with their autocorrelation (namely, shot noise) revealing the particles' charge2,3. This is not the case when a highly diluted beam is partitioned. Bosons or fermions will exhibit particle antibunching (owing to their sparsity and discreteness)4-6. However, when diluted anyons, such as quasiparticles in fractional quantum Hall states, are partitioned in a narrow constriction, their autocorrelation reveals an essential aspect of their quantum exchange statistics: their braiding phase7. Here we describe detailed measurements of weakly partitioned, highly diluted, one-dimension-like edge modes of the one-third filling fractional quantum Hall state. The measured autocorrelation agrees with our theory of braiding anyons in the time domain (instead of braiding in space); with a braiding phase of 2θ = 2π/3, without any fitting parameters. Our work offers a relatively straightforward and simple method to observe the braiding statistics of exotic anyonic states, such as non-abelian states8, without resorting to complex interference experiments9.

3.
Nature ; 592(7853): 214-219, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33828314

RESUMEN

In the 1950s, Pomeranchuk1 predicted that, counterintuitively, liquid 3He may solidify on heating. This effect arises owing to high excess nuclear spin entropy in the solid phase, where the atoms are spatially localized. Here we find that an analogous effect occurs in magic-angle twisted bilayer graphene2-6. Using both local and global electronic entropy measurements, we show that near a filling of one electron per moiré unit cell, there is a marked increase in the electronic entropy to about 1kB per unit cell (kB is the Boltzmann constant). This large excess entropy is quenched by an in-plane magnetic field, pointing to its magnetic origin. A sharp drop in the compressibility as a function of the electron density, associated with a reset of the Fermi level back to the vicinity of the Dirac point, marks a clear boundary between two phases. We map this jump as a function of electron density, temperature and magnetic field. This reveals a phase diagram that is consistent with a Pomeranchuk-like temperature- and field-driven transition from a low-entropy electronic liquid to a high-entropy correlated state with nearly free magnetic moments. The correlated state features an unusual combination of seemingly contradictory properties, some associated with itinerant electrons-such as the absence of a thermodynamic gap, metallicity and a Dirac-like compressibility-and others associated with localized moments, such as a large entropy and its disappearance under a magnetic field. Moreover, the energy scales characterizing these two sets of properties are very different: whereas the compressibility jump has an onset at a temperature of about 30 kelvin, the bandwidth of magnetic excitations is about 3 kelvin or smaller. The hybrid nature of the present correlated state and the large separation of energy scales have implications for the thermodynamic and transport properties of the correlated states in twisted bilayer graphene.

4.
Nat Mater ; 22(5): 570-575, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36781950

RESUMEN

The introduction of superconductivity to the Dirac surface states of a topological insulator leads to a topological superconductor, which may support topological quantum computing through Majorana zero modes1,2. The development of a scalable material platform is key to the realization of topological quantum computing3,4. Here we report on the growth and properties of high-quality (Bi,Sb)2Te3/graphene/gallium heterostructures. Our synthetic approach enables atomically sharp layers at both hetero-interfaces, which in turn promotes proximity-induced superconductivity that originates in the gallium film. A lithography-free, van der Waals tunnel junction is developed to perform transport tunnelling spectroscopy. We find a robust, proximity-induced superconducting gap formed in the Dirac surface states in 5-10 quintuple-layer (Bi,Sb)2Te3/graphene/gallium heterostructures. The presence of a single Abrikosov vortex, where the Majorana zero modes are expected to reside, manifests in discrete conductance changes. The present material platform opens up opportunities for understanding and harnessing the application potential of topological superconductivity.

5.
Nature ; 562(7726): E6, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30108363

RESUMEN

In this Article, the publication details for references 33, 34 and 40 have been corrected online.

6.
Nature ; 559(7713): 205-210, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29867160

RESUMEN

Topological states of matter are characterized by topological invariants, which are physical quantities whose values are quantized and do not depend on the details of the system (such as its shape, size and impurities). Of these quantities, the easiest to probe is the electrical Hall conductance, and fractional values (in units of e2/h, where e is the electronic charge and h is the Planck constant) of this quantity attest to topologically ordered states, which carry quasiparticles with fractional charge and anyonic statistics. Another topological invariant is the thermal Hall conductance, which is harder to measure. For the quantized thermal Hall conductance, a fractional value in units of κ0 (κ0 = π2kB2/(3h), where kB is the Boltzmann constant) proves that the state of matter is non-Abelian. Such non-Abelian states lead to ground-state degeneracy and perform topological unitary transformations when braided, which can be useful for topological quantum computation. Here we report measurements of the thermal Hall conductance of several quantum Hall states in the first excited Landau level and find that the thermal Hall conductance of the 5/2 state is compatible with a half-integer value of 2.5κ0, demonstrating its non-Abelian nature.

7.
Proc Natl Acad Sci U S A ; 118(27)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34183403

RESUMEN

Topological superconductivity in quasi-one-dimensional systems is a novel phase of matter with possible implications for quantum computation. Despite years of effort, a definitive signature of this phase in experiments is still debated. A major cause of this ambiguity is the side effects of applying a magnetic field: induced in-gap states, vortices, and alignment issues. Here we propose a planar semiconductor-superconductor heterostructure as a platform for realizing topological superconductivity without applying a magnetic field to the two-dimensional electron gas hosting the topological state. Time-reversal symmetry is broken only by phase biasing the proximitizing superconductors, which can be achieved using extremely small fluxes or bias currents far from the quasi-one-dimensional channel. Our platform is based on interference between this phase biasing and the phase arising from strong spin-orbit coupling in closed electron trajectories. The principle is demonstrated analytically using a simple model, and then shown numerically for realistic devices. We show a robust topological phase diagram, as well as explicit wavefunctions of Majorana zero modes. We discuss experimental issues regarding the practical implementation of our proposal, establishing it as an accessible scheme with contemporary experimental techniques.

8.
Phys Rev Lett ; 131(18): 186601, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37977648

RESUMEN

We propose a method to extract the mutual exchange statistics of the anyonic excitations of a general Abelian fractional quantum Hall state, by comparing the tunneling characteristics of a quantum point contact in two different experimental conditions. In the first, the tunneling current between two edges at different chemical potentials is measured. In the second, one of these edges is strongly diluted by an earlier point contact. We describe the case of the dilute beam in terms of a time-domain interferometer between the anyons flowing along the edge and quasiparticle-quasihole excitations created at the tunneling quantum point contact. In both cases, temperature is kept large, such that the measured current is given to linear response. Remarkably, our proposal does not require the measurement of current correlations, and allows us to carefully separate effects of the fractional charge and statistics from effects of intra- and interedge interactions.

9.
Phys Rev Lett ; 130(6): 066302, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36827579

RESUMEN

A Coulomb blockaded M-Majorana island coupled to normal metal leads realizes a novel type of Kondo effect where the effective impurity "spin" transforms under the orthogonal group SO(M). The impurity spin stems from the nonlocal topological ground state degeneracy of the island and thus the effect is known as the topological Kondo effect. We introduce a physically motivated N-channel generalization of the topological Kondo model. Starting from the simplest case N=2, we conjecture a stable intermediate coupling fixed point and evaluate the resulting low-temperature impurity entropy. The impurity entropy indicates that an emergent Fibonacci anyon can be realized in the N=2 model. We also map the case N=2, M=4 to the conventional four-channel Kondo model and find the conductance at the intermediate fixed point. By using the perturbative renormalization group, we also analyze the large-N limit, where the fixed point moves to weak coupling. In the isotropic limit, we find an intermediate stable fixed point, which is stable to "exchange" coupling anisotropies, but unstable to channel anisotropy. We evaluate the fixed point impurity entropy and conductance to obtain experimentally observable signatures of our results. In the large-N limit, we evaluate the full crossover function describing the temperature-dependent conductance.

10.
Phys Rev Lett ; 130(7): 076204, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36867804

RESUMEN

The emergence of correlated insulating phases in magic-angle twisted bilayer graphene exhibits strong sample dependence. Here, we derive an Anderson theorem governing the robustness against disorder of the Kramers intervalley coherent (K-IVC) state, a prime candidate for describing the correlated insulators at even fillings of the moiré flat bands. We find that the K-IVC gap is robust against local perturbations, which are odd under PT, where P and T denote particle-hole conjugation and time reversal, respectively. In contrast, PT-even perturbations will in general induce subgap states and reduce or even eliminate the gap. We use this result to classify the stability of the K-IVC state against various experimentally relevant perturbations. The existence of an Anderson theorem singles out the K-IVC state from other possible insulating ground states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA