RESUMEN
Carbon (C) dynamics in canopy and roots influence whole-tree carbon fluxes, but little is known about canopy regulation of tree-root activity. Here, the patterns and dynamics of canopy-root C coupling are assessed in tropical trees. Large aeroponics facility was used to study the root systems of Ceiba pentandra and Khaya anthotheca saplings directly at different light intensities. In Ceiba, root respiration (Rr ) co-varied with photosynthesis (An ) in large saplings (3-to-7-m canopy-root axis) at high-light, but showed no consistent pattern at low-light. At medium-light and in small saplings (c. 1-m axis), Rr tended to decrease transiently towards midday. Proximal roots had higher Rr and nonstructural carbohydrate concentrations than distal roots, but canopy-root coupling was unaffected by root location. In medium-sized Khaya, no Rr pattern was observed, and in both species, Rr was unrelated to temperature. The early-afternoon increase in Rr suggests that canopy-root coupling is based on mass flow of newly fixed C in the phloem, whereas the early-morning rise in Rr with An indicates an additional coupling signal that travels faster than the phloem sap. In large saplings and potentially also in higher trees, light and possibly additional environmental factors control the diurnal patterns of canopy-root coupling, irrespective of root location.
Asunto(s)
Ceiba/fisiología , Luz , Meliaceae/fisiología , Hojas de la Planta/efectos de la radiación , Raíces de Plantas/efectos de la radiación , Árboles/efectos de la radiación , Clima Tropical , Dióxido de Carbono/metabolismo , Ceiba/efectos de la radiación , Meliaceae/efectos de la radiación , Floema/metabolismo , Floema/efectos de la radiación , Fotones , Fotosíntesis/efectos de la radiación , Corteza de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , Transpiración de Plantas/efectos de la radiación , Reología , Solubilidad , Almidón/metabolismo , Azúcares/metabolismo , Temperatura , Árboles/fisiología , Xilema/anatomía & histologíaRESUMEN
A significant amount of the carbon (C) assimilated in photosynthesis by trees is re-emitted to the atmosphere via the respiratory CO2 flux of roots. Because of technical constraints, we have little understanding of the extent and dynamics of the respiratory CO2 flux of roots at the total root system scale (RCF). This study aimed to fill this gap and to quantify the daily C budget of entire trees. We used aeroponics as a novel approach to measure directly and simultaneously RCF and the net CO2 flux of the entire shoot (SCF), to estimate their night- and day-time contributions to daily tree CO2 budget and to estimate the relative contribution of different root categories to RCF in large saplings of the tropical tree species Ceiba pentandra (L.) Gaertn. By maintaining root temperature within a narrow range (24-27.5 °C), we controlled for its effect on RCF, thus allowing the potential relationship between RCF and SCF to be tested. The carbon gain of the fast-growing saplings was 0.79 ± 0.10 g C sapling-1 day-1, with day-time shoot CO2 uptake outweighing night-time shoot and day- and night-time root CO2 losses by a factor of two. Other than a slight rise in the morning hours, RCF was relatively stable and not coupled to the daily dynamics of SCF. Albeit having lower specific respiration rates compared with fine-roots, the relative contributions of coarse-roots (diameter >2 mm) to RCF were substantial because of their large biomass and were estimated to range from 43 to 63% of RCF at midday of different days during the growing season. The results of this study suggest that (i) the entire root system needs to be monitored for its impact on the tree CO2 budget, (ii) RCF cannot be derived from SCF and (iii) the importance of coarse-root respiration to RCF may be greater than appreciated.
Asunto(s)
Dióxido de Carbono , Árboles , Ciclo del Carbono , Fotosíntesis , Raíces de PlantasRESUMEN
Despite the important role of tropical forest ecosystems in the uptake and storage of atmospheric carbon dioxide (CO2), the carbon (C) dynamics of tropical tree species remains poorly understood, especially regarding belowground roots. This study assessed the allocation of newly assimilated C in the fast-growing pioneer tropical tree species Ceiba pentandra (L.), with a special focus on different root categories. During a 5-day pulse-labelling experiment, 9-month-old (~3.5-m-tall) saplings were labelled with 13CO2 in a large-scale aeroponic facility, which allowed tracing the label in bulk biomass and in non-structural carbohydrates (sugars and starch) as well as respiratory CO2 from the canopy to the root system, including both woody and non-woody roots. A combined logistic and exponential model was used to evaluate 13C mean transfer time and mean residence time (MRT) to the root systems. We found 13C in the root phloem as early as 2 h after the labelling, indicating a mean C transfer velocity of 2.4 ± 0.1 m h-1. Five days after pulse labelling, 27% of the tracers taken up by the trees were found in the leaves and 13% were recovered in the woody tissue of the trunk, 6% in the bark and 2% in the root systems, while 52% were lost, most likely by respiration and exudation. Larger amounts of 13C were found in root sugars than in starch, the former also demonstrating shorter MRT than starch. Of all investigated root categories, non-woody white roots (NRW) showed the largest 13C enrichment and peaked in the deepest NRW (2-3.5 m) as early as 24 ± 2 h after labelling. In contrast to coarse woody brown roots, the sink strength of NRW increased with root depth. The findings of this study improve the understanding of C allocation in young tropical trees and provide unique insights into the changing contributions of woody and non-woody roots to C sink strengths with depth.