Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Pharmacol ; 105(6): 374-385, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38622017

RESUMEN

Counting over 800 members, G protein coupled receptors (GPCRs) form the largest family of membrane receptors encoded in the human genome. Since the discovery of G proteins and GPCRs in the late 1970s and early 1980s, a significant portion of the GPCR research has been focused on identifying ligand/receptor pairs in parallel to studies related to their signaling properties. Despite significant advancements, about a fourth of the ∼400 nonodorant GPCRs are still considered orphan because their natural or endogenous ligands have yet to be identified. We should consider that every GPCR was once an orphan and that endogenous ligands have often been associated with biologic effects without a complete understanding of the molecular identity of their target receptors. Within this framework, this review offers a historical perspective on deorphanization processes for representative GPCRs, including the ghrelin receptor, γ aminobutyric acid B receptor, apelin receptor, cannabinoid receptors, and GPR15. It explores three main scenarios encountered in deorphanization efforts and discusses key questions and methodologies employed in elucidating ligand-receptor interactions, providing insights for future research endeavors. SIGNIFICANCE STATEMENT: Understanding how scientists have historically approached the issue of GPCR deorphanization and pairing of biologically active ligands with their cognate receptors are relevant topics in pharmacology. In fact, the biology of each GPCR, including its pathophysiological involvement, has often been uncovered only after its deorphanization, illuminating druggable targets for various diseases. Furthermore, uncovered endogenous ligands have therapeutic value as many ligands-or derivates thereof-are developed into drugs.


Asunto(s)
Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Ligandos , Animales , Transducción de Señal , Historia del Siglo XX
2.
J Nucl Cardiol ; 31: 101779, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38215598

RESUMEN

OBJECTIVES: The objective of this study was to determine the diagnostic performance of 15O-water positron emission tomography (PET) myocardial perfusion imaging to detect coronary artery disease (CAD) using the truth-standard of invasive coronary angiography (ICA) with fractional flow reserve (FFR) or instantaneous wave-Free Ratio (iFR) or coronary computed tomography angiogram (CCTA). BACKGROUND: 15O-water has a very high first-pass extraction that allows accurate quantification of myocardial blood flow and detection of flow-limiting CAD. However, the need for an on-site cyclotron and lack of automated production at the point of care and relatively complex image analysis protocol has limited its clinical use to date. METHODS: The RAPID WATER FLOW study is an open-label, multicenter, prospective investigation of the accuracy of 15O-water PET to detect obstructive angiographic and physiologically significant stenosis in patients with suspected CAD. The study will include the use of an automated system for producing, dosing, and injecting 15O-water and enrolling approximately 215 individuals with suspected CAD at approximately 10 study sites in North America and Europe. The primary endpoint of the study is the diagnostic sensitivity and specificity of the 15O-water PET study using the truth-standard of ICA with FFR or iFR to determine flow-limiting stenosis, or CCTA to rule out CAD and incorporating a quantitative analytic platform developed for the 15O-water PET acquisitions. Sensitivity and specificity are to be considered positive if the lower bound of the 95% confidence interval is superior to the threshold of 60% for both, consistent with prior registration studies. Subgroup analyses include assessments of diagnostic sensitivity, specificity, and accuracy in female, obese, and diabetic individuals, as well as in those with multivessel disease. All enrolled individuals will be followed for adverse and serious adverse events for up to 32 hours after the index PET scan. The study will have >90% power (one-sided test, α = 0.025) to test the hypothesis that sensitivity and specificity of 15O-water PET are both >60%. CONCLUSIONS: The RAPID WATER FLOW study is a prospective, multicenter study to determine the diagnostic sensitivity and specificity of 15O-water PET as compared to ICA with FFR/iFR or CCTA. This study will introduce several novel aspects to imaging registration studies, including a more relevant truth standard incorporating invasive physiologic indexes, coronary CTA to qualify normal individuals for eligibility, and a more quantitative approach to image analysis than has been done in prior pivotal studies. CLINICAL TRIAL REGISTRATION INFORMATION: Clinical-Trials.gov (#NCT05134012).


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Imagen de Perfusión Miocárdica , Humanos , Femenino , Estudios Prospectivos , Reserva del Flujo Fraccional Miocárdico/fisiología , Constricción Patológica , Agua , Angiografía Coronaria/métodos , Perfusión , Valor Predictivo de las Pruebas , Imagen de Perfusión Miocárdica/métodos , Angiografía por Tomografía Computarizada/métodos
3.
bioRxiv ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39091869

RESUMEN

G protein-coupled receptors (GPCRs) are key pharmacological targets, yet many remain underutilized due to unknown activation mechanisms and ligands. Orphan GPCRs, lacking identified natural ligands, are a high priority for research, as identifying their ligands will aid in understanding their functions and potential as drug targets. Most GPCRs, including orphans, couple to Gi/o/z family members, however current assays to detect their activation are limited, hindering ligand identification efforts. We introduce GZESTY, a highly sensitive, cell-based assay developed in an easily deliverable format designed to study the pharmacology of Gi/o/z-coupled GPCRs and assist in deorphanization. We optimized assay conditions and developed an all-in-one vector employing novel cloning methods to ensure the correct expression ratio of GZESTY components. GZESTY successfully assessed activation of a library of ligand-activated GPCRs, detecting both full and partial agonism, as well as responses from endogenous GPCRs. Notably, with GZESTY we established the presence of endogenous ligands for GPR176 and GPR37 in brain extracts, validating its use in deorphanization efforts. This assay enhances the ability to find ligands for orphan GPCRs, expanding the toolkit for GPCR pharmacologists.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA