Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 23(4): 793-801, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38578539

RESUMEN

All over the world, from America to the Mediterranean Sea, the plant pathogen Xylella fastidiosa represents one of the most difficult challenges with many implications at ecological, agricultural, and economic levels. X. fastidiosa is a rod-shaped Gram-negative bacterium belonging to the family of Xanthomonadaceae. It grows at very low rates and infects a wide range of plants thanks to different vectors. Insects, through their stylets, suck a sap rich in nutrients and inject bacteria into xylem vessels. Since, until now, no antimicrobial treatment has been successfully applied to kill X. fastidiosa and/or prevent its diffusion, in this study, antimicrobial blue light (aBL) was explored as a potential anti-Xylella tool. Xylella fastidiosa subsp. pauca Salento-1, chosen as a model strain, showed a certain degree of sensitivity to light at 410 nm. The killing effect was light dose dependent and bacterial concentration dependent. These preliminary results support the potential of blue light in decontamination of agricultural equipment and/or plant surface; however, further investigations are needed for in vivo applications.


Asunto(s)
Enfermedades de las Plantas , Xylella , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
2.
Curr Microbiol ; 81(7): 183, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771359

RESUMEN

The fungus Monascus is a well-known source of secondary metabolites with interesting pharmaceutical and nutraceutical applications. In particular, Monascus pigments possess a wide range of biological activities (e.g. antimicrobial, antioxidant, anti-inflammatory or antitumoral). To broaden the scope of their possible application, this study focused on testing Monascus pigment extracts as potential photosensitizing agents efficient in antimicrobial photodynamic therapy (aPDT) against bacteria. For this purpose, eight different extracts of secondary metabolites from the liquid- and solid-state fermentation of Monascus purpureus DBM 4360 and Monascus sp. DBM 4361 were tested against Gram-positive and Gram-negative model bacteria, Bacillus subtilis and Escherichia coli and further screened for ESKAPE pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. To the bacterial culture, increasing concentration of extracts was added and it was found that all extracts showed varying antimicrobial activity against Gram-positive bacteria in dark, which was further increased after irradiation. Gram-negative bacteria were tolerant to the extracts' exposure in the dark but sensitivity to almost all extracts that occurred after irradiation. The Monascus sp. DBM 4361 extracts seemed to be the best potential candidate for aPDT against Gram-positive bacteria, being efficient at low doses, i.e. the lowest total concentration of Monascus pigments exhibiting aPDT effect was 3.92 ± 1.36 mg/L for E. coli. Our results indicate that Monascus spp., forming monascuspiloin as the major yellow pigment and not-forming mycotoxin citrinin, is a promising source of antimicrobials and photoantimicrobials.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Monascus , Micelio , Monascus/química , Monascus/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Micelio/química , Micelio/efectos de la radiación , Micelio/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Productos Biológicos/farmacología , Productos Biológicos/química , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/efectos de la radiación , Mezclas Complejas/farmacología , Mezclas Complejas/química , Pigmentos Biológicos/farmacología , Fotoquimioterapia
3.
Molecules ; 29(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38731582

RESUMEN

Clinicians often have to face infections caused by microorganisms that are difficult to eradicate due to their resistance and/or tolerance to antimicrobials. Among these pathogens, Pseudomonas aeruginosa causes chronic infections due to its ability to form biofilms on medical devices, skin wounds, ulcers and the lungs of patients with Cystic Fibrosis. In this scenario, the plant world represents an important reservoir of natural compounds with antimicrobial and/or antibiofilm properties. In this study, an extract from the leaves of Combretum micranthum G. Don, named Cm4-p, which was previously investigated for its antimicrobial activities, was assayed for its capacity to inhibit biofilm formation and/or to eradicate formed biofilms. The model strain P. aeruginosa PAO1 and its isogenic biofilm hyperproducer derivative B13 were treated with Cm4-p. Preliminary IR, UV-vis, NMR, and mass spectrometry analyses showed that the extract was mainly composed of catechins bearing different sugar moieties. The phytocomplex (3 g/L) inhibited the biofilm formation of both the PAO1 and B13 strains in a significant manner. In light of the obtained results, Cm4-p deserves deeper investigations of its potential in the antimicrobial field.


Asunto(s)
Antibacterianos , Biopelículas , Catequina , Combretum , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Pseudomonas aeruginosa , Biopelículas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Antibacterianos/química , Catequina/farmacología , Catequina/química , Combretum/química , Hojas de la Planta/química , Azúcares , Humanos
4.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901769

RESUMEN

In this work, two compounds belonging to the BODIPY family, and previously investigated for their photosensitizing properties, have been bound to the amino-pendant groups of three random copolymers, with different amounts of methyl methacrylate (MMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) in the backbone. The P(MMA-ran-DMAEMA) copolymers have inherently bactericidal activity, due to the amino groups of DMAEMA and to the quaternized nitrogens bounded to BODIPY. Systems consisting of filter paper discs coated with copolymers conjugated to BODIPY were tested on two model microorganisms, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). On solid medium, irradiation with green light induced an antimicrobial effect, visible as a clear inhibition area around the coated disks. The system based on the copolymer with 43% DMAEMA and circa 0.70 wt/wt% of BODIPY was the most efficient in both bacterial species, and a selectivity for the Gram-positive model was observed, independently of the conjugated BODIPY. A residual antimicrobial activity was also observed after dark incubation, attributed to the inherently bactericidal properties of copolymers.


Asunto(s)
Antiinfecciosos , Fotoquimioterapia , Escherichia coli , Metilmetacrilato , Staphylococcus aureus , Antiinfecciosos/farmacología , Metacrilatos/farmacología , Polímeros/farmacología , Antibacterianos/farmacología , Fármacos Fotosensibilizantes/farmacología
5.
Molecules ; 28(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38005258

RESUMEN

Photodynamic therapy (PDT) is an anticancer/antibacterial strategy in which photosensitizers (PSs), light, and molecular oxygen generate reactive oxygen species and induce cell death. PDT presents greater selectivity towards tumor cells than conventional chemotherapy; however, PSs have limitations that have prompted the search for new molecules featuring more favorable chemical-physical characteristics. Curcumin and its derivatives have been used in PDT. However, low water solubility, rapid metabolism, interference with other drugs, and low stability limit curcumin use. Chemical modifications have been proposed to improve curcumin activity, and metal-based PSs, especially ruthenium(II) complexes, have attracted considerable attention. This study aimed to characterize six Ru(II)-arene curcuminoids for anticancer and/or antibacterial PDT. The hydrophilicity, photodegradation rates, and singlet oxygen generation of the compounds were evaluated. The photodynamic effects on human colorectal cancer cell lines were also assessed, along with the ability of the compounds to induce ROS production, apoptotic, necrotic, and/or autophagic cell death. Overall, our encouraging results indicate that the Ru(II)-arene curcuminoid derivatives are worthy of further investigation and could represent an interesting option for cancer PDT. Additionally, the lack of significant in vivo toxicity on the larvae of Galleria mellonella is an important finding. Finally, the photoantimicrobial activity of HCurc I against Gram-positive bacteria is indeed promising.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Curcumina , Fotoquimioterapia , Rutenio , Humanos , Fármacos Fotosensibilizantes/química , Rutenio/farmacología , Rutenio/química , Curcumina/farmacología , Diarilheptanoides , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Antineoplásicos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
6.
Photochem Photobiol Sci ; 21(7): 1233-1248, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35377108

RESUMEN

In recent years, antimicrobial Photodynamic Therapy (aPDT) gained increasing attention for its potential to inhibit the growth and spread of microorganisms, both as free-living cells and/or embedded in biofilm communities. In this scenario, compounds belonging to the family of boron-dipyrromethenes (BODIPYs) represent a very promising class of photosensitizers for applications in antimicrobial field. In this study, twelve non-ionic and three cationic BODIPYs were assayed for the inactivation of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. As expected, S. aureus showed to be very sensitive to BODIPYs and mild conditions were sufficient to reach good rates of photoinactivation with both neutral and monocationic ones. Surprisingly, one neutral compound (named B9 in this study) resulted the best BODIPY to photoinactivate P. aeruginosa PAO1. The photoinactivation of C. albicans was reached with both neutral and mono-cationic BODIPYs. Furthermore, biofilms of the three model microorganisms were challenged with BODIPYs in light-based antimicrobial technique. S. aureus biofilms were successfully inhibited with milder conditions than those applied to P. aeruginosa and C. albicans. Notably, it was possible to eradicate 24-h-old biofilms of both S. aureus and P. aeruginosa. In conclusion, this study supports the potential of neutral BODIPYs as pan-antimicrobial PSs.


Asunto(s)
Antiinfecciosos , Fármacos Fotosensibilizantes , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Biopelículas , Boro/farmacología , Compuestos de Boro , Candida albicans , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Pseudomonas aeruginosa , Staphylococcus aureus
7.
Biotechnol Appl Biochem ; 69(3): 981-1001, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33870552

RESUMEN

Synthetic derivatives are currently used instead of pigments in many applicative fields, from food to feed, from pharmaceutical to diagnostic, from agronomy to industry. Progress in organic chemistry allowed to obtain rather cheap compounds covering the whole color spectrum. However, several concerns arise from this chemical approach, as it is mainly based on nonrenewable resources such as fossil oil, and the toxicity or carcinogenic properties of products and/or precursors may be harmful for personnel involved in the productive processes. In this scenario, microorganisms and their pigments represent a colorful world to discover and reconsider. Each living bacterial strain may be a source of secondary metabolites with peculiar functions. The aim of this review is to link the physiological role of bacterial pigments with their potential use in different biotechnological fields. This enormous potential supports the big challenge for the development of strategies useful to identify, produce, and purify the right pigment for the desired application. At the end of this ideal journey through the world of bacterial pigments, the attention will be focused on melanin compounds, whose production relies upon different techniques ranging from natural producers, heterologous hosts, or isolated enzymes. In a green workflow, the microorganisms represent the starting and final point of pigment production.


Asunto(s)
Bacterias , Biotecnología , Bacterias/metabolismo , Biotecnología/métodos , Melaninas , Pigmentos Biológicos
8.
Anal Bioanal Chem ; 413(3): 853-864, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33206214

RESUMEN

Quorum sensing (QS) is the ability of some bacteria to detect and to respond to population density through signalling molecules. QS molecules are involved in motility and cell aggregation mechanisms in diseases such as sepsis. Few biomarkers are currently available to diagnose sepsis, especially in high-risk conditions. The aim of this study was the development of new analytical methods based on liquid chromatography-mass spectrometry for the detection and quantification of QS signalling molecules, including N-acyl homoserine lactones (AHL) and hydroxyquinolones (HQ), in biofluids. Biological samples used in the study were Pseudomonas aeruginosa bacterial cultures and plasma from patients with sepsis. We developed two MS analytical methods, based on neutral loss (NL) and product ion (PI) experiments, to identify and characterize unknown AHL and HQ molecules. We then established a multiple-reaction-monitoring (MRM) method to quantify specific QS compounds. We validated the HPLC-MS-based approaches (MRM-NL-PI), and data were in accord with the validation guidelines. With the NL and PI MS-based methods, we identified and characterized 3 and 13 unknown AHL and HQ compounds, respectively, in biological samples. One of the newly found AHL molecules was C12-AHL, first quantified in Pseudomonas aeruginosa bacterial cultures. The MRM quantitation of analytes in plasma from patients with sepsis confirmed the analytical ability of MRM for the quantification of virulence factors during sepsis. Graphical abstract.


Asunto(s)
Acil-Butirolactonas/análisis , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Pseudomonas aeruginosa/metabolismo , Quinolonas/análisis , Percepción de Quorum , Transducción de Señal , Acil-Butirolactonas/química , Humanos , Límite de Detección , Estructura Molecular , Insuficiencia Multiorgánica/sangre , Insuficiencia Multiorgánica/etiología , Quinolonas/química , Reproducibilidad de los Resultados , Sepsis/sangre , Sepsis/complicaciones , Sepsis/microbiología , Factores de Virulencia/sangre
9.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202773

RESUMEN

In recent years, antimicrobial photodynamic therapy (aPDT) has received increasing attention as a promising tool aimed at both treating microbial infections and sanitizing environments. Since biofilm formation on biological and inert surfaces makes difficult the eradication of bacterial communities, further studies are needed to investigate such tricky issue. In this work, a panel of 13 diaryl-porphyrins (neutral, mono- and di-cationic) was taken in consideration to photoinactivate Pseudomonas aeruginosa. Among cationic photosensitizers (PSs) able to efficiently bind cells, in this study two dicationic showed to be intrinsically toxic and were ruled out by further investigations. In particular, the dicationic porphyrin (P11) that was not toxic, showed a better photoinactivation rate than monocationic in suspended cells. Furthermore, it was very efficient in inhibiting the biofilms produced by the model microorganism Pseudomonas aeruginosa PAO1 and by clinical strains derived from urinary tract infection and cystic fibrosis patients. Since P. aeruginosa represents a target very difficult to inactivate, this study confirms the potential of dicationic diaryl-porphyrins as photo-activated antimicrobials in different applicative fields, from clinical to environmental ones.


Asunto(s)
Biopelículas/efectos de los fármacos , Biopelículas/efectos de la radiación , Luz , Porfirinas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/efectos de la radiación , Antibacterianos/química , Antibacterianos/farmacología , Cationes , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Porfirinas/química
10.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352806

RESUMEN

Recent studies performed on the invertebrate model Hirudo verbana (medicinal leech) suggest that the T2 ribonucleic enzyme HvRNASET2 modulates the leech's innate immune response, promoting microbial agglutination and supporting phagocytic cells recruitment in challenged tissues. Indeed, following injection of both lipoteichoic acid (LTA) and Staphylococcus aureus in the leech body wall, HvRNASET2 is expressed by leech type I granulocytes and induces bacterial aggregation to aid macrophage phagocytosis. Here, we investigate the HvRNASET2 antimicrobial role, in particular assessing the effects on the Gram-negative bacteria Escherichia coli. For this purpose, starting from the three-dimensional molecule reconstruction and in silico analyses, the antibacterial activity was evaluated both in vitro and in vivo. The changes induced in treated bacteria, such as agglutination and alteration in wall integrity, were observed by means of light, transmission and scanning electron microscopy. Moreover, immunogold, AMPs (antimicrobial peptides) and lipopolysaccharide (LPS) binding assays were carried out to evaluate HvRNASET2 interaction with the microbial envelopes and the ensuing ability to affect microbial viability. Finally, in vivo experiments confirmed that HvRNASET2 promotes a more rapid phagocytosis of bacterial aggregates by macrophages, representing a novel molecule for counteracting pathogen infections and developing alternative solutions to improve human health.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Hirudo medicinalis/crecimiento & desarrollo , Viabilidad Microbiana/efectos de los fármacos , Ribonucleasas/química , Ribonucleasas/farmacología , Aglutinación , Secuencia de Aminoácidos , Animales , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Hirudo medicinalis/efectos de los fármacos , Hirudo medicinalis/metabolismo , Imagenología Tridimensional , Inmunidad Innata , Macrófagos/efectos de los fármacos , Fagocitosis , Conformación Proteica , Homología de Secuencia de Aminoácido
11.
Int J Mol Sci ; 20(6)2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30934533

RESUMEN

A complex bidirectional communication system exists between the gastrointestinal tract and the brain. Initially termed the "gut-brain axis" it is now renamed the "microbiota-gut-brain axis" considering the pivotal role of gut microbiota in maintaining local and systemic homeostasis. Different cellular and molecular pathways act along this axis and strong attention is paid to neuroactive molecules (neurotransmitters, i.e., noradrenaline, dopamine, serotonin, gamma aminobutyric acid and glutamate and metabolites, i.e., tryptophan metabolites), sustaining a possible interkingdom communication system between eukaryota and prokaryota. This review provides a description of the most up-to-date evidence on glutamate as a neurotransmitter/neuromodulator in this bidirectional communication axis. Modulation of glutamatergic receptor activity along the microbiota-gut-brain axis may influence gut (i.e., taste, visceral sensitivity and motility) and brain functions (stress response, mood and behavior) and alterations of glutamatergic transmission may participate to the pathogenesis of local and brain disorders. In this latter context, we will focus on two major gut disorders, such as irritable bowel syndrome and inflammatory bowel disease, both characterized by psychiatric co-morbidity. Research in this area opens the possibility to target glutamatergic neurotransmission, either pharmacologically or by the use of probiotics producing neuroactive molecules, as a therapeutic approach for the treatment of gastrointestinal and related psychiatric disorders.


Asunto(s)
Encéfalo/metabolismo , Microbioma Gastrointestinal , Tracto Gastrointestinal/metabolismo , Ácido Glutámico/metabolismo , Transducción de Señal , Animales , Humanos , Neurotransmisores/metabolismo
12.
Microbiology (Reading) ; 164(12): 1557-1566, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30300122

RESUMEN

Pseudomonas aeruginosa is a microorganism that is well adapted to both clinical and industrial settings, where it can form adherent communities that are difficult to eradicate. New anti-Pseudomonas compounds and strategies are necessary, as the current antimicrobial approaches for the inhibition of biofilm formation and, above all, the eradication of formed biofilms are ineffective. Compounds that belong to the furoxan family, which are well-known NO donors, have recently been shown to display anti-Pseudomonas activity. The present study investigates three furoxan compounds that are substituted at the hetero-ring with electron-withdrawing groups (NO2, CN, CONH2) for their effects on P. aeruginosa PAO1 growth and biofilm formation/dispersal. Of the furoxans tested, only 3-nitro-4-phenylfuroxan (KN455) inhibited the growth of suspended P. aeruginosa PAO1 cultures. Furthermore, KN455 inhibited the formation of both younger and older biofilms with very high yields and thus proved itself to be toxic to planktonic subpopulations. It also displayed moderate eradicating power. The activity of KN455 does not appear to be related to its capacity to release small amounts of NO. Interestingly, the isomer 4-nitro-3-phenylfuroxan (KN454), included for comparison, displayed a comparable antibiofilm rate, but did not show the same antimicrobial activity against suspended cells and planktonic subpopulations. While hypotheses as to the mechanism of action have been formulated, further investigations are necessary to shed light onto the antimicrobial activity of this furoxan.


Asunto(s)
Antibacterianos/farmacología , Donantes de Óxido Nítrico/farmacología , Oxadiazoles/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Óxido Nítrico/análisis , Donantes de Óxido Nítrico/química , Oxadiazoles/química , Pseudomonas aeruginosa/crecimiento & desarrollo
13.
Lasers Med Sci ; 33(6): 1401-1407, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29038970

RESUMEN

Photosensitizers belonging to the boron-dipyrromethenes (BODIPYs) class were recently found endowed with good efficacy in the antibacterial photodynamic therapy (aPDT) against both Gram-positive and Gram-negative bacteria. In this paper, we report on the remarkable adjuvant effect exerted in this respect by linear polyamidoamines (PAAs), a family of moderately basic polymers obtained by Michael-type polyaddition of amines to bisacrylamides. Three different PAAs (AGMA1, BP-AGMA, and BP-DMEDA) were studied, testing for each two different molecular weight samples (8000 and 24000 Da). At nontoxic concentrations (1 or 10 µg mL-1) all PAAs remarkably improved the killing efficacy of BODIPY upon irradiation with a green LED device (range: from 480 to 580 nm with λmax = 525 nm) up to an energy rate of 16.6 J cm-2. A 6-7 log unit decrease in bacteria survival was observed with concentrations of BODIPY of 1.0 and 0.1 µM in the case of Escherichia coli and Staphylococcus aureus, respectively. The one-way analysis of variance (ANOVA) was used to evaluate the statistical significance of different treatments (n ≥ 3). Thus, the PAA-photosensitizer combination warrants potentially as a new, effective, and mild method of killing bacteria. Moreover, the antibacterial treatment here reported might be successfully applied to defeat the bacterial resistance often encountered with many antibacterial drugs owing to the double action of this two-component treatment.


Asunto(s)
Antibacterianos/farmacología , Compuestos de Boro/farmacología , Fármacos Fotosensibilizantes/farmacología , Poliaminas/química , Escherichia coli/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos
14.
Microbiology (Reading) ; 163(11): 1557-1567, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29022867

RESUMEN

Clinicians often have to deal with infections that are difficult to control because they are caused by superbugs resistant to many antibiotics. Alternatives to antibiotic treatment include antimicrobial photodynamic therapy (aPDT). The photodynamic process causes bacterial death, inducing oxidative stress through the photoactivation of photosensitizer molecules in the presence of oxygen. No PDT-resistant bacteria have been selected to date, thus the response to photo-oxidative stress in non-phototrophic bacteria needs further investigation. The opportunistic pathogen Pseudomonas aeruginosa, in particular, has been shown to be more tolerant to PDT than other micro-organisms. In order to find any genetic determinants involved in PDT-tolerance, a panel of transposon mutants of P. aeruginosa PAO1 involved in the quorum sensing signalling system and membrane cytoplasmic transport were photoinactivated as part of this study. Two pseudomonas quinolone signalling (PQS) knock-out mutants, pqsH- and pqsC-, were as PDT-sensitive as the PAO1 wild-type strains. Two PQS hyperproducer variants, pqsA- and rsaL-, were shown to be more tolerant to photo-oxidative stress than the wild-type strain. In the pqsA- mutant, the hyperpigmentation due to the presence of phenazines could protect cells against PDT stress, while in rsaL- no pigmentation was detectable. Furthermore, a mutant impaired in an ATP-binding cassette transport involved in maintaining the asymmetry of the outer membrane was significantly more tolerant to photo-oxidative stress than the wild-type strain. These observations support the involvement of quorum sensing and the importance of the bacterial cell envelope when dealing with photo-oxidative stress induced by photodynamic treatment.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Estrés Oxidativo/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/efectos de la radiación , Quinolonas/metabolismo , Percepción de Quorum/efectos de la radiación , Proteínas Bacterianas/genética , Elementos Transponibles de ADN/genética , Proteínas de Transporte de Membrana/genética , Mutagénesis Insercional , Mutación , Fenazinas/metabolismo , Fenazinas/efectos de la radiación , Fármacos Fotosensibilizantes/farmacología , Pseudomonas aeruginosa/genética , Piocianina/metabolismo , Piocianina/efectos de la radiación , Quinolonas/efectos de la radiación , Percepción de Quorum/genética , Transducción de Señal/efectos de la radiación , Cloruro de Tolonio/farmacología
15.
Microbiology (Reading) ; 162(9): 1554-1562, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27516083

RESUMEN

The antimicrobial power of honey seems to be ascribable to several factors, including oxidative and osmotic stress. The aim of this study was to find genetic determinants involved in the response to honey stress in the opportunistic pathogen Pseudomonas aeruginosa, chosen as model micro-organism. A library of transposon mutants of P. aeruginosa PAO1 was constructed and only four mutants unable to grow in presence of fir honeydew honey were selected. All four mutants were impaired in the major H2O2-scavenging enzyme catalase A (KatA). The knockout of katA gene caused sensitivity, as expected, not only to hydrogen peroxide but also to different types of honey including Manuka GMO 220 honey. Genetic complementation, as well as the addition of PAO1 supernatant containing extracellular catalase, restored tolerance to honey stress in all the mutants. As P. aeruginosa PAO1 catalase KatA copes with H2O2 stress, it is conceivable that the antimicrobial activity of honey is, at least partially, due to the presence of hydrogen peroxide in honey or the ability of honey to induce production of hydrogen peroxide. The katA-deficient mutants could be used as tester micro-organisms to compare the power of different types of natural and curative honeys in eliciting oxidative stress mediated by hydrogen peroxide.


Asunto(s)
Proteínas Bacterianas/metabolismo , Catalasa/metabolismo , Miel/análisis , Pseudomonas aeruginosa/enzimología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Catalasa/genética , Peróxido de Hidrógeno/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
16.
Biomacromolecules ; 17(9): 2882-90, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27463471

RESUMEN

Photoactivatable keratin sponges were prepared from protein aqueous solutions by the freeze-drying method, followed by photofunctionalization with two different photosensitizers (PS): Azure A (AzA) and 5,10,15,20-tetrakis [4-(2-N,N,N-trimethylethylthio)-2,3,5,6-tetrafluorophenyl]porphyrin tetraiodide salt (TTFAP). The prepared sponges have a porosity between 49% and 80% and a mean pore size in the 37-80 µm range. As compared to AzA, TTFAP interacts more strongly with the sponges as demonstrated by a lower PS release (6% vs 20%), a decreased swelling ratio (1.6 vs 7.4), and a slower biodegradation rate. Nevertheless, AzA-loaded sponges showed the highest photoactivity, as also demonstrated by their higher antibactericidal activity toward both Gram-positive and Gram-negative bacteria. The obtained results suggest that the antimicrobial photodynamic effect can be finely triggered through a proper selection of the amount and type of photosensitizer, as well as through the irradiation time. Finally, all the prepared sponges support human fibroblast cells growth, while no significant cell viability impairment is observed upon light irradiation.


Asunto(s)
Antiinfecciosos/farmacología , Queratinas/química , Queratinas/farmacología , Fármacos Fotosensibilizantes/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Lana/química , Animales , Antiinfecciosos/química , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Humanos , Luz , Pseudomonas aeruginosa/efectos de la radiación , Staphylococcus aureus/efectos de la radiación
17.
Microbiology (Reading) ; 161(12): 2298-309, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26419906

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen known to be resistant to different classes of antibiotics and disinfectants. P. aeruginosa also displays a certain degree of tolerance to photodynamic therapy (PDT), an alternative antimicrobial approach exploiting a photo-oxidative stress induced by exogenous photosensitizers and visible light. To evaluate whether P. aeruginosa pigments can contribute to its relative tolerance to PDT, we analysed the response to this treatment of isogenic transposon mutants of P. aeruginosa PAO1 with altered pigmentation. In general, in the presence of pigments a higher tolerance to PDT-induced photo-oxidative stress was observed. Hyperproduction of pyomelanin makes the cells much more tolerant to stress caused by either radicals or singlet oxygen generated by different photosensitizers upon photoactivation. Phenazines, pyocyanin and phenazine-1-carboxylic acid, produced in different amounts depending on the cultural conditions, are able to counteract both types of PDT-elicited reactive oxygen species. Hyperproduction of pyoverdine, caused by a mutation in a quorum-sensing gene, rendered P. aeruginosa more tolerant to a photosensitizer that generates mainly singlet oxygen, although in this case the observed tolerance to photo-oxidative stress cannot be exclusively attributed to the presence of the pigment.


Asunto(s)
Estrés Oxidativo/efectos de la radiación , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/efectos de la radiación , Piocianina/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Luz , Pseudomonas aeruginosa/genética
18.
Biofouling ; 30(8): 883-91, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25184429

RESUMEN

Photodynamic therapy (PDT) combines the use of organic dyes (photosensitizers, PSs) and visible light in order to elicit a photo-oxidative stress which causes bacterial death. GD11, a recently synthesized PS belonging to the boron-dipyrromethene (BODIPY) class, was demonstrated to be efficient against planktonic cultures of Pseudomonas aeruginosa, causing a 7 log unit reduction of viable cells when administered at 2.5 µM. The effectiveness of GD11 against P. aeruginosa biofilms grown in flow-cells and microtiter trays was also demonstrated. Confocal laser scanning microscopy of flow-cell-grown biofilms suggests that the treatment has a biocidal effect against bacterial biofilm cells.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Biopelículas/efectos de la radiación , Boro/farmacología , Microscopía Confocal , Porfobilinógeno/análogos & derivados , Porfobilinógeno/farmacología , Pseudomonas aeruginosa/efectos de la radiación
19.
Antibiotics (Basel) ; 12(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36830139

RESUMEN

Photodynamic Antimicrobial Chemotherapy (PACT) has received great attention in recent years since it is an effective and promising modality for the treatment of human oral and skin infections with the advantage of bypassing pathogens' resistance to antimicrobials. Moreover, PACT applications demonstrated a certain activity in the inhibition and eradication of biofilms, overcoming the well-known tolerance of sessile communities to antimicrobial agents. In this study, 13 diaryl-porphyrins (mono-, di-cationic, and non-ionic) P1-P13 were investigated for their potential as photosensitizer anti-Staphylococcus aureus. The efficacy of the diaryl-porphyrins was evaluated through photo-inactivation tests. Crystal-violet staining combined with viable count techniques were aimed at assaying their anti-biofilm activity. Among the tested compounds, the neutral photosensitizer P4 was better than the cationic ones, irrespective of their corresponding binding rates. In particular, P4 was active in inhibiting the biofilm formation and in impairing the viability of the adherent and planktonic populations of a 24 h old biofilm. The inhibitory activity was also efficient against a methicillin resistant S. aureus strain. In conclusion, the diaryl-porphyrin family represents a reservoir of promising compounds for photodynamic applications against the pathogen S. aureus and in preventing the formation of biofilms that cause many infections to become chronic.

20.
Biotechnol Adv ; 57: 107948, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35337933

RESUMEN

The spread of antimicrobial resistance in Gram-positive pathogens represents a threat to human health. To counteract the current lack of novel antibiotics, alternative antibacterial treatments have been increasingly investigated. This review covers the last decade's developments in using nanoparticles as carriers for the two classes of frontline antibiotics active on multidrug-resistant Gram-positive pathogens, i.e., glycopeptide antibiotics and daptomycin. Most of the reviewed papers deal with vancomycin nanoformulations, being teicoplanin- and daptomycin-carrying nanosystems much less investigated. Special attention is addressed to nanoantibiotics used for contrasting biofilm-associated infections. The status of the art related to nanoantibiotic toxicity is critically reviewed.


Asunto(s)
Daptomicina , Infecciones por Bacterias Grampositivas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias Grampositivas , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Teicoplanina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA