Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Pharmacother ; 177: 117033, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38941889

RESUMEN

Melanoma cells express high levels of CD73 that produce extracellular immunosuppressive adenosine. Changes in the CD73 expression occur in response to tumor environmental factors, contributing to tumor phenotype plasticity and therapeutic resistance. Previously, we have observed that CD73 expression can be up-regulated on the surface of melanoma cells in response to nutritional stress. Here, we explore the mechanism by which melanoma cells release soluble CD73 under low nutrient availability and whether this might be affected by agents targeting the proto-oncogene B-Raf (BRAF). We found that starved melanoma cells can release high levels of CD73, able to convert AMP into adenosine, and this activity is abrogated by selective CD73 inhibitors, APCP or PSB-12489. The release of CD73 from melanoma cells is mediated by the matrix metalloproteinase MMP-9. Indeed, MMP-9 inhibitors significantly reduce the levels of CD73 released from the cells, while its surface levels increase. Of relevance, melanoma cells, harboring an activating BRAF mutation, upon treatment with dabrafenib or vemurafenib, show a strong reduction of CD73 cell expression and reduced levels of CD73 released into the extracellular space. Conversely, melanoma cells resistant to dabrafenib show high expression of membrane-bound CD73 and soluble CD73 released into the culture medium. In summary, our data indicate that CD73 is released from melanoma cells. The expression of CD73 is associated with response to BRAF inhibitors. Melanoma cells developing resistance to dabrafenib show increased expression of CD73, including soluble CD73 released from cells, suggesting that CD73 is involved in acquiring resistance to treatment.

2.
Biomed Pharmacother ; 165: 115225, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37517292

RESUMEN

CD73 is the key enzyme in the generation of extracellular adenosine, a mediator involved in tumor progression, tumor immune escape and resistance to anti-cancer therapeutics. Microenvironmental conditions influence the expression of CD73 in tumor cells. However how CD73 expression and activity is regulated in a stress condition of lower nutrient availability are largely unknown. Our results indicate that serum starvation leads to a marked up-regulation of CD73 expression on A375 melanoma cells in a time-dependent manner. The cell-surface expression of CD73 is associated with an increased release of TGF-ß1 by starved cells. Blockade of TGF-ß1 receptors or TGFß/SMAD3 signaling pathway significantly reduce the expression of CD73 induced by starvation. Treatment of cells with rTGF-ß1 up-regulates the expression of CD73 in a concentration-dependent manner, confirming the role of this pathway in regulating CD73 in melanoma A375 cells. The increased expression of CD73 is associated with enhanced AMPase activity, which is selectively reduced by inhibitors of CD73 activity, APCP and PSB-12489. Pharmacological blockade of CD73 significantly inhibits invasion of melanoma cells in a transwell system. Furthermore, using multiplex immunofluorescence imaging we found that, within human melanoma metastases, tumor cells at the dedifferentiated stage show the highest CD73 protein expression. In summary, our data provide new insights into the mechanism regulating the expression/activity of CD73 in melanoma cells in a condition of lower availability of nutrients, which is a common feature of the tumor microenvironment. Within human metastatic melanoma tissues elevated protein expression of CD73 is associated with an invasive-like phenotype.


Asunto(s)
5'-Nucleotidasa , Melanoma , Factor de Crecimiento Transformador beta1 , Humanos , 5'-Nucleotidasa/metabolismo , Adenosina/metabolismo , Línea Celular Tumoral , Melanoma/patología , Nutrientes , Factor de Crecimiento Transformador beta1/metabolismo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA