Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 160(6): 1087-98, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25768905

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a paradigmatic neurodegenerative proteinopathy, in which a mutant protein (in this case, ATAXIN1) accumulates in neurons and exerts toxicity; in SCA1, this process causes progressive deterioration of motor coordination. Seeking to understand how post-translational modification of ATAXIN1 levels influences disease, we discovered that the RNA-binding protein PUMILIO1 (PUM1) not only directly regulates ATAXIN1 but also plays an unexpectedly important role in neuronal function. Loss of Pum1 caused progressive motor dysfunction and SCA1-like neurodegeneration with motor impairment, primarily by increasing Ataxin1 levels. Breeding Pum1(+/-) mice to SCA1 mice (Atxn1(154Q/+)) exacerbated disease progression, whereas breeding them to Atxn1(+/-) mice normalized Ataxin1 levels and largely rescued the Pum1(+/-) phenotype. Thus, both increased wild-type ATAXIN1 levels and PUM1 haploinsufficiency could contribute to human neurodegeneration. These results demonstrate the importance of studying post-transcriptional regulation of disease-driving proteins to reveal factors underlying neurodegenerative disease.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Enfermedades Neurodegenerativas/genética , Proteínas Nucleares/genética , Proteínas de Unión al ARN/genética , Regiones no Traducidas 3' , Animales , Antígenos Ly/genética , Ataxina-1 , Ataxinas , Encéfalo/metabolismo , Técnicas de Sustitución del Gen , Haploinsuficiencia , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Mutación , Enfermedades Neurodegenerativas/patología , Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN Mensajero/química
2.
Nat Immunol ; 17(2): 187-95, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26726812

RESUMEN

Studies of repertoires of mouse monoclonal CD4(+) T cells have revealed several mechanisms of self-tolerance; however, which mechanisms operate in normal repertoires is unclear. Here we studied polyclonal CD4(+) T cells specific for green fluorescent protein expressed in various organs, which allowed us to determine the effects of specific expression patterns on the same epitope-specific T cells. Peptides presented uniformly by thymic antigen-presenting cells were tolerated by clonal deletion, whereas peptides excluded from the thymus were ignored. Peptides with limited thymic expression induced partial clonal deletion and impaired effector T cell potential but enhanced regulatory T cell potential. These mechanisms were also active for T cell populations specific for endogenously expressed self antigens. Thus, the immunotolerance of polyclonal CD4(+) T cells was maintained by distinct mechanisms, according to self-peptide expression patterns.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Expresión Génica , Tolerancia Inmunológica , Péptidos/genética , Péptidos/inmunología , Secuencia de Aminoácidos , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Autoantígenos/química , Autoantígenos/genética , Autoantígenos/inmunología , Autoinmunidad , Supresión Clonal/genética , Supresión Clonal/inmunología , Epítopos de Linfocito T/química , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Femenino , Genes Reporteros , Ratones , Ratones Transgénicos , Péptidos/química , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Timo/inmunología , Timo/metabolismo
3.
Hum Mol Genet ; 32(16): 2545-2557, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37384418

RESUMEN

Protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK) is one of the three major sensors in the unfolded protein response (UPR). The UPR is involved in the modulation of protein synthesis as an adaptive response. Prolonged PERK activity correlates with the development of diseases and the attenuation of disease severity. Thus, the current debate focuses on the role of the PERK signaling pathway either in accelerating or preventing diseases such as neurodegenerative diseases, myelin disorders, and tumor growth and cancer. In this review, we examine the current findings on the PERK signaling pathway and whether it is beneficial or detrimental for the above-mentioned disorders.


Asunto(s)
Neoplasias , Enfermedades Neurodegenerativas , Humanos , Estrés del Retículo Endoplásmico/genética , Enfermedades Neurodegenerativas/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Respuesta de Proteína Desplegada , Neoplasias/genética
4.
EMBO J ; 40(7): e106106, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33709453

RESUMEN

A critical question in neurodegeneration is why the accumulation of disease-driving proteins causes selective neuronal loss despite their brain-wide expression. In Spinocerebellar ataxia type 1 (SCA1), accumulation of polyglutamine-expanded Ataxin-1 (ATXN1) causes selective degeneration of cerebellar and brainstem neurons. Previous studies revealed that inhibiting Msk1 reduces phosphorylation of ATXN1 at S776 as well as its levels leading to improved cerebellar function. However, there are no regulators that modulate ATXN1 in the brainstem-the brain region whose pathology is most closely linked to premature death. To identify new regulators of ATXN1, we performed genetic screens and identified a transcription factor-kinase axis (ZBTB7B-RSK3) that regulates ATXN1 levels. Unlike MSK1, RSK3 is highly expressed in the human and mouse brainstems where it regulates Atxn1 by phosphorylating S776. Reducing Rsk3 rescues brainstem-associated pathologies and deficits, and lowering Rsk3 and Msk1 together improves cerebellar and brainstem function in an SCA1 mouse model. Our results demonstrate that selective vulnerability of brain regions in SCA1 is governed by region-specific regulators of ATXN1, and targeting multiple regulators could rescue multiple degenerating brain areas.


Asunto(s)
Tronco Encefálico/metabolismo , Cerebelo/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Ataxias Espinocerebelosas/metabolismo , Factores de Transcripción/metabolismo , Animales , Ataxina-1/genética , Ataxina-1/metabolismo , Línea Celular Tumoral , Células Cultivadas , Proteínas de Unión al ADN/genética , Drosophila melanogaster , Células HEK293 , Humanos , Ratones , Fosforilación , Estabilidad Proteica , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Ataxias Espinocerebelosas/genética , Factores de Transcripción/genética
5.
Cerebellum ; 22(4): 756-760, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35733029

RESUMEN

This is a summary of the virtual presentation given at the 2021 meeting of the Society for Research on the Cerebellum and Ataxias, https://www.meetings.be/SRCA2021/ , where the therapeutic potential of the CCK-CCK1R pathway for treating diseases involving Purkinje cell degeneration was presented. Spinocerebellar ataxia type 1 (SCA1) is one of a group of almost 50 genetic diseases characterized by the degeneration of cerebellar Purkinje cells. The SCA1 Pcp2-ATXN1[30Q]D776 mouse model displays ataxia, i.e. Purkinje cell dysfunction, but lacks progressive Purkinje cell degeneration. RNA-seq revealed increased expression of cholecystokinin (CCK) in cerebella of Pcp2-ATXN1[30Q]D776 mice. Importantly, the absence of Cck1 receptor (CCK1R) in Pcp2-ATXN1[30Q]D776 mice conferred a progressive degenerative disease with Purkinje cell loss. Administration of a CCK1R agonist to Pcp2-AXTN1[82Q] mice reduced Purkinje cell pathology and associated deficits in motor performance. In addition, administration of the CCK1R agonist improved motor performance of Pcp2-ATXN2[127Q] SCA2 mice. Furthermore, CCK1R activation corrected mTORC1 signaling and improved the expression of calbindin in the cerebella of AXTN1[82Q] and ATXN2[127Q] mice. These results support the Cck-Cck1R pathway is a potential therapeutic target for the treatment of diseases involving Purkinje neuron degeneration.


Asunto(s)
Células de Purkinje , Ataxias Espinocerebelosas , Ratones , Animales , Células de Purkinje/fisiología , Colecistoquinina/farmacología , Colecistoquinina/metabolismo , Receptores de Colecistoquinina/metabolismo , Ataxina-1/genética , Ratones Transgénicos , Ataxias Espinocerebelosas/genética , Cerebelo/patología , Ataxia/genética , Modelos Animales de Enfermedad
6.
Mol Psychiatry ; 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35301425

RESUMEN

Although circadian and sleep disorders are frequently associated with autism spectrum disorders (ASD), it remains elusive whether clock gene disruption can lead to autistic-like phenotypes in animals. The essential clock gene Bmal1 has been associated with human sociability and its missense mutations are identified in ASD. Here we report that global Bmal1 deletion led to significant social impairments, excessive stereotyped and repetitive behaviors, as well as motor learning disabilities in mice, all of which resemble core behavioral deficits in ASD. Furthermore, aberrant cell density and immature morphology of dendritic spines were identified in the cerebellar Purkinje cells (PCs) of Bmal1 knockout (KO) mice. Electrophysiological recordings uncovered enhanced excitatory and inhibitory synaptic transmission and reduced firing rates in the PCs of Bmal1 KO mice. Differential expression of ASD- and ataxia-associated genes (Ntng2, Mfrp, Nr4a2, Thbs1, Atxn1, and Atxn3) and dysregulated pathways of translational control, including hyperactivated mammalian target of rapamycin complex 1 (mTORC1) signaling, were identified in the cerebellum of Bmal1 KO mice. Interestingly, the antidiabetic drug metformin reversed mTORC1 hyperactivation and alleviated major behavioral and PC deficits in Bmal1 KO mice. Importantly, conditional Bmal1 deletion only in cerebellar PCs was sufficient to recapitulate autistic-like behavioral and cellular changes akin to those identified in Bmal1 KO mice. Together, these results unveil a previously unidentified role for Bmal1 disruption in cerebellar dysfunction and autistic-like behaviors. Our findings provide experimental evidence supporting a putative role for dysregulation of circadian clock gene expression in the pathogenesis of ASD.

7.
Hum Mol Genet ; 29(19): 3249-3265, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-32964235

RESUMEN

Selective neuronal vulnerability in neurodegenerative disease is poorly understood. Using the ATXN1[82Q] model of spinocerebellar ataxia type 1 (SCA1), we explored the hypothesis that regional differences in Purkinje neuron degeneration could provide novel insights into selective vulnerability. ATXN1[82Q] Purkinje neurons from the anterior cerebellum were found to degenerate earlier than those from the nodular zone, and this early degeneration was associated with selective dysregulation of ion channel transcripts and altered Purkinje neuron spiking. Efforts to understand the basis for selective dysregulation of channel transcripts revealed modestly increased expression of the ATXN1 co-repressor Capicua (Cic) in anterior cerebellar Purkinje neurons. Importantly, disrupting the association between ATXN1 and Cic rescued the levels of these ion channel transcripts, and lentiviral overexpression of Cic in the nodular zone accelerated both aberrant Purkinje neuron spiking and neurodegeneration. These findings reinforce the central role for Cic in SCA1 cerebellar pathophysiology and suggest that only modest reductions in Cic are needed to have profound therapeutic impact in SCA1.


Asunto(s)
Ataxina-1/metabolismo , Activación del Canal Iónico , Neuronas/patología , Células de Purkinje/patología , Proteínas Represoras/metabolismo , Ataxias Espinocerebelosas/patología , Animales , Ataxina-1/genética , Femenino , Técnicas de Sustitución del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Células de Purkinje/metabolismo , Proteínas Represoras/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo
8.
Nat Rev Neurosci ; 18(10): 613-626, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28855740

RESUMEN

The dominantly inherited spinocerebellar ataxias (SCAs) are a large and diverse group of neurodegenerative diseases. The most prevalent SCAs (SCA1, SCA2, SCA3, SCA6 and SCA7) are caused by expansion of a glutamine-encoding CAG repeat in the affected gene. These SCAs represent a substantial portion of the polyglutamine neurodegenerative disorders and provide insight into this class of diseases as a whole. Recent years have seen considerable progress in deciphering the clinical, pathological, physiological and molecular aspects of the polyglutamine SCAs, with these advances establishing a solid base from which to pursue potential therapeutic approaches.


Asunto(s)
Péptidos/genética , Ataxias Espinocerebelosas , Animales , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Humanos , Modelos Genéticos , Modelos Neurológicos , Mutación , Proteínas del Tejido Nervioso/genética , Péptidos/fisiología , Ataxias Espinocerebelosas/diagnóstico , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/fisiopatología
9.
Cerebellum ; 21(3): 452-481, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34378174

RESUMEN

Spinocerebellar ataxias (SCAs) represent a large group of hereditary degenerative diseases of the nervous system, in particular the cerebellum, and other systems that manifest with a variety of progressive motor, cognitive, and behavioral deficits with the leading symptom of cerebellar ataxia. SCAs often lead to severe impairments of the patient's functioning, quality of life, and life expectancy. For SCAs, there are no proven effective pharmacotherapies that improve the symptoms or substantially delay disease progress, i.e., disease-modifying therapies. To study SCA pathogenesis and potential therapies, animal models have been widely used and are an essential part of pre-clinical research. They mainly include mice, but also other vertebrates and invertebrates. Each animal model has its strengths and weaknesses arising from model animal species, type of genetic manipulation, and similarity to human diseases. The types of murine and non-murine models of SCAs, their contribution to the investigation of SCA pathogenesis, pathological phenotype, and therapeutic approaches including their advantages and disadvantages are reviewed in this paper. There is a consensus among the panel of experts that (1) animal models represent valuable tools to improve our understanding of SCAs and discover and assess novel therapies for this group of neurological disorders characterized by diverse mechanisms and differential degenerative progressions, (2) thorough phenotypic assessment of individual animal models is required for studies addressing therapeutic approaches, (3) comparative studies are needed to bring pre-clinical research closer to clinical trials, and (4) mouse models complement cellular and invertebrate models which remain limited in terms of clinical translation for complex neurological disorders such as SCAs.


Asunto(s)
Calidad de Vida , Ataxias Espinocerebelosas , Animales , Cerebelo/patología , Consenso , Ratones , Modelos Animales , Ataxias Espinocerebelosas/diagnóstico , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/terapia
10.
Hum Mol Genet ; 27(16): 2863-2873, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29860311

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is caused by the expansion of a trinucleotide repeat that encodes a polyglutamine tract in ataxin-1 (ATXN1). The expanded polyglutamine in ATXN1 increases the protein's stability and results in its accumulation and toxicity. Previous studies have demonstrated that decreasing ATXN1 levels ameliorates SCA1 phenotypes and pathology in mouse models. We rationalized that reducing ATXN1 levels through pharmacological inhibition of its modulators could provide a therapeutic avenue for SCA1. Here, through a forward genetic screen in Drosophila we identified, p21-activated kinase 3 (Pak3) as a modulator of ATXN1 levels. Loss-of-function of fly Pak3 or Pak1, whose mammalian homologs belong to Group I of PAK proteins, reduces ATXN1 levels, and accordingly, improves disease pathology in a Drosophila model of SCA1. Knockdown of PAK1 potently reduces ATXN1 levels in mammalian cells independent of the well-characterized S776 phosphorylation site (known to stabilize ATXN1) thus revealing a novel molecular pathway that regulates ATXN1 levels. Furthermore, pharmacological inhibition of PAKs decreases ATXN1 levels in a mouse model of SCA1. To explore the potential of using PAK inhibitors in combination therapy, we combined the pharmacological inhibition of PAK with MSK1, a previously identified modulator of ATXN1, and examined their effects on ATXN1 levels. We found that inhibition of both pathways results in an additive decrease in ATXN1 levels. Together, this study identifies PAK signaling as a distinct molecular pathway that regulates ATXN1 levels and presents a promising opportunity to pursue for developing potential therapeutics for SCA1.


Asunto(s)
Ataxina-1/genética , Ataxias Espinocerebelosas/genética , Quinasas p21 Activadas/genética , Animales , Ataxina-1/antagonistas & inhibidores , Cerebelo/metabolismo , Cerebelo/patología , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Inhibidores Enzimáticos/administración & dosificación , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Péptidos/genética , Fosforilación , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Transducción de Señal/genética , Ataxias Espinocerebelosas/fisiopatología , Quinasas p21 Activadas/antagonistas & inhibidores
12.
Nature ; 498(7454): 325-331, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23719381

RESUMEN

Many neurodegenerative disorders, such as Alzheimer's, Parkinson's and polyglutamine diseases, share a common pathogenic mechanism: the abnormal accumulation of disease-causing proteins, due to either the mutant protein's resistance to degradation or overexpression of the wild-type protein. We have developed a strategy to identify therapeutic entry points for such neurodegenerative disorders by screening for genetic networks that influence the levels of disease-driving proteins. We applied this approach, which integrates parallel cell-based and Drosophila genetic screens, to spinocerebellar ataxia type 1 (SCA1), a disease caused by expansion of a polyglutamine tract in ataxin 1 (ATXN1). Our approach revealed that downregulation of several components of the RAS-MAPK-MSK1 pathway decreases ATXN1 levels and suppresses neurodegeneration in Drosophila and mice. Importantly, pharmacological inhibitors of components of this pathway also decrease ATXN1 levels, suggesting that these components represent new therapeutic targets in mitigating SCA1. Collectively, these data reveal new therapeutic entry points for SCA1 and provide a proof-of-principle for tackling other classes of intractable neurodegenerative diseases.


Asunto(s)
Drosophila melanogaster/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/toxicidad , Proteínas Nucleares/metabolismo , Proteínas Nucleares/toxicidad , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología , Proteínas ras/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Ataxina-1 , Ataxinas , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Drosophila melanogaster/genética , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Datos de Secuencia Molecular , Terapia Molecular Dirigida , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilación , Estabilidad Proteica/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas 90-kDa/deficiencia , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Transgenes
13.
Neurobiol Dis ; 116: 69-77, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29753755

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a fatal inherited neurodegenerative disease. In this study, we demonstrate the label-free optical imaging methodology that can detect, with a high degree of sensitivity, discrete areas of degeneration in the cerebellum of the SCA1 mouse models. We used ATXN1[82Q] and ATXN1[30Q]-D776 mice in which the transgene is directed only to Purkinje cells. Molecular layer, granular layer, and white matter regions are analyzed using the intrinsic contrasts provided by polarization-sensitive optical coherence tomography. Cerebellar atrophy in SCA1 mice occurred both in gray matter and white matter. While gray matter atrophy is obvious, indications of white matter atrophy including different birefringence characteristics, and shortened and contorted branches are observed. Imaging results clearly show the loss or atrophy of myelinated axons in ATXN1[82Q] mice. The method provides unbiased contrasts that can facilitate the understanding of the pathological progression in neurodegenerative diseases and other neural disorders.


Asunto(s)
Ataxina-1 , Corteza Cerebelosa/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Sustancia Blanca/diagnóstico por imagen , Animales , Ataxina-1/genética , Atrofia/diagnóstico por imagen , Atrofia/genética , Atrofia/patología , Corteza Cerebelosa/patología , Sustancia Gris/patología , Ratones , Sustancia Blanca/patología
14.
Neurobiol Dis ; 116: 93-105, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29758256

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a polyglutamine (polyQ) repeat neurodegenerative disease in which a primary site of pathogenesis are cerebellar Purkinje cells. In addition to polyQ expansion of ataxin-1 protein (ATXN1), phosphorylation of ATXN1 at the serine 776 residue (ATXN1-pS776) plays a significant role in protein toxicity. Utilizing a biochemical approach, pharmacological agents and cell-based assays, including SCA1 patient iPSC-derived neurons, we examine the role of Protein Kinase A (PKA) as an effector of ATXN1-S776 phosphorylation. We further examine the implications of PKA-mediated phosphorylation at ATXN1-S776 on SCA1 through genetic manipulation of the PKA catalytic subunit Cα in Pcp2-ATXN1[82Q] mice. Here we show that pharmacologic inhibition of S776 phosphorylation in transfected cells and SCA1 patient iPSC-derived neuronal cells lead to a decrease in ATXN1. In vivo, reduction of PKA-mediated ATXN1-pS776 results in enhanced degradation of ATXN1 and improved cerebellar-dependent motor performance. These results provide evidence that PKA is a biologically important kinase for ATXN1-pS776 in cerebellar Purkinje cells.


Asunto(s)
Ataxia/metabolismo , Ataxina-1/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células de Purkinje/metabolismo , Serina/metabolismo , Animales , Ataxia/genética , Ataxia/patología , Ataxina-1/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Fosforilación/fisiología , Células de Purkinje/patología , Serina/genética
15.
Hum Mol Genet ; 25(23): 5083-5093, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28007900

RESUMEN

Splicing regulation is an important step of post-transcriptional gene regulation. It is a highly dynamic process orchestrated by RNA-binding proteins (RBPs). RBP dysfunction and global splicing dysregulation have been implicated in many human diseases, but the in vivo functions of most RBPs and the splicing outcome upon their loss remain largely unexplored. Here we report that constitutive deletion of Rbm17, which encodes an RBP with a putative role in splicing, causes early embryonic lethality in mice and that its loss in Purkinje neurons leads to rapid degeneration. Transcriptome profiling of Rbm17-deficient and control neurons and subsequent splicing analyses using CrypSplice, a new computational method that we developed, revealed that more than half of RBM17-dependent splicing changes are cryptic. Importantly, RBM17 represses cryptic splicing of genes that likely contribute to motor coordination and cell survival. This finding prompted us to re-analyze published datasets from a recent report on TDP-43, an RBP implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), as it was demonstrated that TDP-43 represses cryptic exon splicing to promote cell survival. We uncovered a large number of TDP-43-dependent splicing defects that were not previously discovered, revealing that TDP-43 extensively regulates cryptic splicing. Moreover, we found a significant overlap in genes that undergo both RBM17- and TDP-43-dependent cryptic splicing repression, many of which are associated with survival. We propose that repression of cryptic splicing by RBPs is critical for neuronal health and survival. CrypSplice is available at www.liuzlab.org/CrypSplice.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Demencia Frontotemporal/genética , Degeneración Nerviosa/genética , Proteínas del Tejido Nervioso/genética , Factores de Empalme de ARN/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Biología Computacional/métodos , Modelos Animales de Enfermedad , Exones/genética , Demencia Frontotemporal/fisiopatología , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Degeneración Nerviosa/patología , Proteínas del Tejido Nervioso/biosíntesis , Células de Purkinje/metabolismo , Células de Purkinje/patología , Empalme del ARN/genética , Factores de Empalme de ARN/biosíntesis , Proteínas de Unión al ARN/biosíntesis , Proteínas de Unión al ARN/genética
16.
Bioessays ; 38(10): 977-80, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27479863

RESUMEN

The conventional approach to developing disease-modifying treatments for neurodegenerative conditions has been to identify drivers of pathology and inhibit such pathways. Here we discuss the possibility that the efficacy of such approaches may be increasingly attenuated as disease progresses. This is based on experiments using mouse models of spinocerebellar ataxia type 1 and Huntington's disease (HD), where expression of the dominantly acting mutations could be switched off, as well as studies in human HD, which suggest that the primary genetic driver of age-of-onset of disease is a much weaker determinant of disease progression in affected individuals. The idea that one may approach a point in the disease course where such rational therapeutic strategies based on targets which determine onset of disease have minimal efficacy, suggests that one needs to consider other approaches to therapies and clinical trial design, including initiation of therapies in presymptomatic individuals.


Asunto(s)
Enfermedad de Huntington/tratamiento farmacológico , Ataxias Espinocerebelosas/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Enfermedad de Huntington/patología , Ratones , Pronóstico , Ataxias Espinocerebelosas/patología
17.
Adv Exp Med Biol ; 1049: 135-145, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29427101

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is an adult-onset, inherited disease that leads to degeneration of Purkinje cells of the cerebellum and culminates in death 10-30 years after disease onset. SCA1 is caused by a CAG repeat mutation in the ATXN1 gene, encoding the ATXN1 protein with an abnormally expanded polyglutamine tract. As neurodegeneration progresses, other brain regions become involved and contribute to cognitive deficits as well as problems with speech, swallowing, and control of breathing. The fundamental basis of pathology is an aberration in the normal function of Purkinje cells affecting regulation of gene transcription and RNA splicing. Glutamine-expanded ATXN1 is highly stable and more resistant to degradation. Moreover, phosphorylation at S776 in ATXN1 is a post-translational modification known to influence protein levels. SCA1 remains an untreatable disease managed only by palliative care. Preclinical studies are founded on the principle that mutant protein load is toxic and attenuating ATXN1 protein levels can alleviate disease. Two approaches being pursued are targeting gene expression or protein levels. Viral delivery of miRNAs harnesses the RNAi pathway to destroy ATXN1 mRNA. This approach shows promise in mouse models of disease. At the protein level, kinase inhibitors that block ATXN1-S776 phosphorylation may lead to therapeutic clearance of unphosphorylated ATXN1.


Asunto(s)
Ataxina-1 , Procesamiento Proteico-Postraduccional , Células de Purkinje , Empalme del ARN , Ataxias Espinocerebelosas , Transcripción Genética , Animales , Ataxina-1/biosíntesis , Ataxina-1/genética , Terapia Genética/métodos , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Fosforilación , Células de Purkinje/metabolismo , Células de Purkinje/patología , Estabilidad del ARN/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología , Ataxias Espinocerebelosas/terapia
18.
J Neurosci ; 35(32): 11292-307, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26269637

RESUMEN

Neuronal atrophy in neurodegenerative diseases is commonly viewed as an early event in a continuum that ultimately results in neuronal loss. In a mouse model of the polyglutamine disorder spinocerebellar ataxia type 1 (SCA1), we tested the hypothesis that cerebellar Purkinje neuron atrophy serves an adaptive role rather than being simply a nonspecific response to injury. In acute cerebellar slices from SCA1 mice, we find that Purkinje neuron pacemaker firing is initially normal but, with the onset of motor dysfunction, becomes disrupted, accompanied by abnormal depolarization. Remarkably, subsequent Purkinje cell atrophy is associated with a restoration of pacemaker firing. The early inability of Purkinje neurons to support repetitive spiking is due to unopposed calcium currents resulting from a reduction in large-conductance calcium-activated potassium (BK) and subthreshold-activated potassium channels. The subsequent restoration of SCA1 Purkinje neuron firing correlates with the recovery of the density of these potassium channels that accompanies cell atrophy. Supporting a critical role for BK channels, viral-mediated increases in BK channel expression in SCA1 Purkinje neurons improves motor dysfunction and partially restores Purkinje neuron morphology. Cerebellar perfusion of flufenamic acid, an agent that restores the depolarized membrane potential of SCA1 Purkinje neurons by activating potassium channels, prevents Purkinje neuron dendritic atrophy. These results suggest that Purkinje neuron dendritic remodeling in ataxia is an adaptive response to increases in intrinsic membrane excitability. Similar adaptive remodeling could apply to other vulnerable neuronal populations in neurodegenerative disease. SIGNIFICANCE STATEMENT: In neurodegenerative disease, neuronal atrophy has long been assumed to be an early nonspecific event preceding neuronal loss. However, in a mouse model of spinocerebellar ataxia type 1 (SCA1), we identify a previously unappreciated compensatory role for neuronal shrinkage. Purkinje neuron firing in these mice is initially normal, but is followed by abnormal membrane depolarization resulting from a reduction in potassium channels. Subsequently, these electrophysiological effects are counteracted by cell atrophy, which by restoring normal potassium channel membrane density, re-establishes pacemaker firing. Reversing the initial membrane depolarization improved motor function and Purkinje neuron morphology in the SCA1 mice. These results suggest that Purkinje neuron remodeling in ataxia is an active compensatory response that serves to normalize intrinsic membrane excitability.


Asunto(s)
Cerebelo/patología , Potenciales de la Membrana/fisiología , Células de Purkinje/patología , Ataxias Espinocerebelosas/patología , Potenciales de Acción/fisiología , Animales , Ataxina-1 , Ataxinas , Atrofia/patología , Atrofia/fisiopatología , Cerebelo/fisiopatología , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Células de Purkinje/fisiología , Ataxias Espinocerebelosas/fisiopatología
19.
Nat Genet ; 39(3): 373-9, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17322884

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by expansion of a glutamine tract in ataxin-1 (ATXN1). SCA1 pathogenesis studies support a model in which the expanded glutamine tract causes toxicity by modulating the normal activities of ATXN1. To explore native interactions that modify the toxicity of ATXN1, we generated a targeted duplication of the mouse ataxin-1-like (Atxn1l, also known as Boat) locus, a highly conserved paralog of SCA1, and tested the role of this protein in SCA1 pathology. Using a knock-in mouse model of SCA1 that recapitulates the selective neurodegeneration seen in affected individuals, we found that elevated Atxn1l levels suppress neuropathology by displacing mutant Atxn1 from its native complex with Capicua (CIC). Our results provide genetic evidence that the selective neuropathology of SCA1 arises from modulation of a core functional activity of ATXN1, and they underscore the importance of studying the paralogs of genes mutated in neurodegenerative diseases to gain insight into mechanisms of pathogenesis.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Ataxias Espinocerebelosas/genética , Animales , Ataxina-1 , Ataxinas , Células Cultivadas , Cerebelo/metabolismo , Expansión de las Repeticiones de ADN , Células Madre Embrionarias/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Modelos Genéticos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/análisis , Células de Purkinje/metabolismo , Proteínas Represoras/metabolismo , Ataxias Espinocerebelosas/patología
20.
Neurobiol Dis ; 74: 158-66, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25446943

RESUMEN

Suppression of transgene expression in a conditional transgenic mouse model of spinocerebellar ataxia 1 (SCA1) reverses the Purkinje cell pathology and motor dysfunction that are hallmarks of SCA1. We previously showed that cerebellar neurochemical levels measured by magnetic resonance spectroscopy (MRS) correlate with progression of pathology and clinical status of patients and that abnormal neurochemical levels normalize upon suppression of transgene expression, indicating their potential as robust surrogate markers of treatment effects. Here we investigated the relative sensitivities of MRS, histology, transgene expression and motor behavioral testing to disease reversal in conditional SCA1 mice. Transgene expression was suppressed by doxycycline administration and treated and untreated mice were assessed by MRS at 9.4tesla before and after treatment and with an accelerating Rotarod, histology and quantitative polymerase chain reaction (qPCR) for ataxin-1 transgene expression following doxycycline treatment. The MRS-measured N-acetylaspartate-to-myo-inositol ratio (NAA/Ins) correlated significantly with the molecular layer (ML) thickness and transgene expression. NAA/Ins, ML thickness and transgene expression were highly significantly different between the treated vs. untreated groups (p<0.0001), while the Rotarod assessment showed a trend for treatment effect. MRS, qPCR and histology had high sensitivity/specificity to distinguish treated from untreated mice, all with areas under the curve (AUC)=0.97-0.98 in receiver operating characteristic (ROC) analyses, while Rotarod had significantly lower sensitivity and specificity (AUC=0.72). Therefore, MRS accurately reflects the extent of recovery from neurodegeneration with sensitivity similar to invasive measures, further validating its potential as a surrogate marker in pre-clinical and clinical treatment trials.


Asunto(s)
Cerebelo/metabolismo , Cerebelo/patología , Espectroscopía de Resonancia Magnética , Recuperación de la Función/fisiología , Prueba de Desempeño de Rotación con Aceleración Constante , Ataxias Espinocerebelosas/diagnóstico , Animales , Área Bajo la Curva , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Ataxina-1/genética , Ataxina-1/metabolismo , Doxiciclina , Expresión Génica , Humanos , Inositol/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Masculino , Ratones Transgénicos , Actividad Motora/fisiología , Reacción en Cadena de la Polimerasa , Curva ROC , Prueba de Desempeño de Rotación con Aceleración Constante/métodos , Sensibilidad y Especificidad , Ataxias Espinocerebelosas/patología , Ataxias Espinocerebelosas/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA