Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37629140

RESUMEN

We assessed whether allicin, through its antihypertensive and antioxidant effects, relieves vascular remodeling, endothelial function, and oxidative stress (OS), thereby improving experimental pulmonary arterial hypertension (PAH). Allicin (16 mg/kg) was administered to rats with PAH (monocrotaline 60 mg/kg). Allicin encouraged body weight gain and survival rate, and medial wall thickness and the right ventricle (RV) hypertrophy were prevented. Also, angiotensin II concentrations in the lung (0.37 ± 0.01 vs. 0.47 ± 0.06 pmoles/mL, allicin and control, respectively) and plasma (0.57 ± 0.05 vs. 0.75 ± 0.064, allicin and control respectively) and the expressions of angiotensin-converting enzyme II and angiotensin II type 1 receptor in lung tissue were maintained at normal control levels with allicin. In PAH rats treated with allicin, nitric oxide (NO) (31.72 ± 1.22 and 51.4 ± 3.45 pmoles/mL), tetrahydrobiopterin (8.43 ± 0.33 and 10.14 ± 0.70 pmoles/mL), cyclic guanosine monophosphate (5.54 ± 0.42 and 5.64 ± 0.73 pmoles/mL), and Ang-(1-7) (0.88 ± 0.23 and 0.83 ± 0.056 pmoles/mL) concentrations increased in lung tissue and plasma, respectively. In contrast, dihydrobiopterin increase was prevented in both lung tissue and plasma (5.75 ± 0.3 and 5.64 ± 0.73 pmoles/mL); meanwhile, phosphodiesterase-5 was maintained at normal levels in lung tissue. OS in PAH was prevented with allicin through the increased expression of Nrf2 in the lung. Allicin prevented the lung response to hypoxia, preventing the overexpression of HIF-1α and VEGF. Allicin attenuated the vascular remodeling and RV hypertrophy in PAH through its effects on NO-dependent vasodilation, modulation of RAS, and amelioration of OS. Also, these effects could be associated with the modulation of HIF-1α and improved lung oxygenation. The global effects of allicin contribute to preventing endothelial dysfunction, remodeling of the pulmonary arteries, and RV hypertrophy, preventing heart failure, thus favoring survival. Although human studies are needed, the data suggest that, alone or in combination therapy, allicin may be an alternative in treating PAH if we consider that, similarly to current treatments, it improves lung vasodilation and increase survival. Allicin may be considered an option when there is a lack of efficacy, and where drug intolerance is observed, to enhance the efficacy of drugs, or when more than one pathogenic mechanism must be addressed.


Asunto(s)
Hipertensión Arterial Pulmonar , Humanos , Animales , Ratas , Remodelación Vascular , Hipertensión Pulmonar Primaria Familiar , Hipertrofia
2.
Ann Hum Biol ; 49(7-8): 291-298, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36350847

RESUMEN

BACKGROUND: Plasminogen activator inhibitor 1 (PAI-1) and resistin are associated with dysfunctional adipose tissue (AT)-related metabolic complications. The role of dietary eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids in this relationship is unknown. AIM: To investigate the association of EPA and DHA with PAI-1 and resistin, as well as the role of this association on the glucose metabolism of apparently healthy subjects. SUBJECTS AND METHODS: Thirty-six healthy individuals were included. Validated food frequency questionnaires were used to analyse dietary habits. Inflammatory and glucose metabolism markers were quantified. Subcutaneous AT samples were obtained, and adipocyte number, area, and macrophage content were assessed. RESULTS: In 36 subjects aged 56 ± 8 years and with a body mass index of 26 ± 4 kg/m2, logEPA, and logDHA showed significant association with logresistin and a marginal association with PAI-1. Adipocyte number, area, and lognumber of macrophages per adipocyte significantly correlated with PAI-1 but not with logresistin. Although logEPA and logDHA were independently associated with loginsulin, loginsulin resistance, and C-Peptide, the addition of logresistin, but not of PAI-1, into the multivariable model, abolished the associations. CONCLUSIONS: EPA and DHA could modulate glucose metabolism across AT functional states. Our data indicate that this association is independent of other metabolic risk factors.


Asunto(s)
Ácidos Grasos Omega-3 , Inhibidor 1 de Activador Plasminogénico , Humanos , Inhibidor 1 de Activador Plasminogénico/metabolismo , Resistina/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacología , Autoinforme , Voluntarios Sanos , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/farmacología , Tejido Adiposo/metabolismo , Glucosa/metabolismo
3.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36012349

RESUMEN

Cardiovascular diseases (CVDs) are a group of diseases in which the common denominator is the affection of blood vessels, heart tissue, and heart rhythm. The genesis of CVD is complex and multifactorial; therefore, approaches are often based on multidisciplinary management and more than one drug is used to achieve the optimal control of risk factors (dyslipidemia, hypertension, hypertrophy, oxidative stress, endothelial dysfunction, inflammation). In this context, allicin, a sulfur compound naturally derived from garlic, has shown beneficial effects on several cardiovascular risk factors through the modulation of cellular mechanisms and signaling pathways. Effective pharmacological treatments for CVD or its risk factors have not been developed or are unknown in clinical practice. Thus, this work aimed to review the cellular mechanisms through which allicin exerts its therapeutic effects and to show why it could be a therapeutic option for the prevention or treatment of CVD and its risk factors.


Asunto(s)
Enfermedades Cardiovasculares , Ajo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Disulfuros/uso terapéutico , Humanos , Ácidos Sulfínicos/farmacología , Ácidos Sulfínicos/uso terapéutico
4.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36555240

RESUMEN

Asthma is a chronic inflammatory disease in the airways with a multifactorial origin but with inflammation and oxidative stress as related pathogenic mechanisms. Garlic (Allium sativum) is a nutraceutical with different biological properties due to sulfur-containing natural compounds. Studies have shown that several compounds in garlic may have beneficial effects on cardiovascular diseases, including those related to the lungs. Therefore, it is possible to take advantage of the compounds from garlic as nutraceuticals for treating lung diseases. The objective of this article is to review the biological properties of the sulfur compounds present in garlic for the treatment of asthma, as well as the cellular mechanisms involved. Here, we discuss the potential therapeutic effects of garlic compounds in the modulation of inflammation and oxidative stress, as well as its antibiotic and antiviral activities for identifying and testing potential treatment options for asthma management.


Asunto(s)
Asma , Ajo , Humanos , Compuestos de Azufre/farmacología , Antioxidantes/farmacología , Asma/tratamiento farmacológico , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Extractos Vegetales/farmacología
5.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34445305

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling. Recent evidence supports that inflammation plays a key role in triggering and maintaining pulmonary vascular remodeling. Recent studies have shown that garlic extract has protective effects in PAH, but the precise role of allicin, a compound derived from garlic, is unknown. Thus, we used allicin to evaluate its effects on inflammation and fibrosis in PAH. Male Wistar rats were divided into three groups: control (CON), monocrotaline (60 mg/kg) (MCT), and MCT plus allicin (16 mg/kg/oral gavage) (MCT + A). Right ventricle (RV) hypertrophy and pulmonary arterial medial wall thickness were determined. IL-1ß, IL-6, TNF-α, NFκB p65, Iκß, TGF-ß, and α-SMA were determined by Western blot analysis. In addition, TNF-α and TGF-ß were determined by immunohistochemistry, and miR-21-5p and mRNA expressions of Cd68, Bmpr2, and Smad5 were determined by RT-qPCR. Results: Allicin prevented increases in vessel wall thickness due to TNF-α, IL-6, IL-1ß, and Cd68 in the lung. In addition, TGF-ß, α-SMA, and fibrosis were lower in the MCT + A group compared with the MCT group. In the RV, allicin prevented increases in TNF-α, IL-6, and TGF-ß. These observations suggest that, through the modulation of proinflammatory and profibrotic markers in the lung and heart, allicin delays the progression of PAH.


Asunto(s)
Antiinflamatorios/uso terapéutico , Disulfuros/uso terapéutico , Hipertensión Pulmonar/tratamiento farmacológico , Ácidos Sulfínicos/uso terapéutico , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Citocinas/genética , Citocinas/metabolismo , Fibrosis , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Masculino , FN-kappa B/genética , FN-kappa B/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas , Ratas Wistar , Proteína Smad5/genética , Proteína Smad5/metabolismo
6.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33670975

RESUMEN

Excessive intake of fructose results in metabolic syndrome (MS) and kidney damage, partly mediated by its metabolism by fructokinase-C or ketohexokinase-C (KHK-C). Osthol has antioxidant properties, is capable of regulating adipogenesis, and inhibits KHK-C activity. Here, we examined the potential protective role of osthol in the development of kidney disease induced by a Western (high-fat/high-sugar) diet. Control rats fed with a high-fat/high-sugar diet were compared with two groups that also received two different doses of osthol (30 mg/kg/d or 40 mg/kg/d body weight BW). A fourth group served as a normal control and received regular chow. At the end of the follow-up, kidney function, metabolic markers, oxidative stress, and lipogenic enzymes were evaluated. The Western diet induced MS (hypertension, hyperglycemia, hypertriglyceridemia, obesity, hyperuricemia), a fall in the glomerular filtration rate, renal tubular damage, and increased oxidative stress in the kidney cortex, with increased expression of lipogenic enzymes and increased kidney KHK expression. Osthol treatment prevented the development of MS and ameliorated kidney damage by inhibiting KHK activity, preventing oxidative stress via nuclear factor erythroid 2-related factor (Nrf2) activation, and reducing renal lipotoxicity. These data suggest that the nutraceutical osthol might be an ancillary therapy to slow the progression of MS and kidney damage induced by a Western diet.


Asunto(s)
Cumarinas/farmacología , Dieta Occidental/efectos adversos , Fructoquinasas/antagonistas & inhibidores , Enfermedades Renales/prevención & control , Síndrome Metabólico/prevención & control , Animales , Cumarinas/uso terapéutico , Dieta de Carga de Carbohidratos/efectos adversos , Dieta Alta en Grasa/efectos adversos , Fructoquinasas/metabolismo , Fructosa/metabolismo , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Ratas , Ratas Wistar
7.
Int J Mol Sci ; 21(14)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650586

RESUMEN

Pulmonary arterial hypertension (PAH) is a severe disease characterized by the loss and obstructive remodeling of the pulmonary arterial wall, causing a rise in pulmonary arterial pressure and pulmonary vascular resistance, which is responsible for right heart failure, functional decline, and death. Although many drugs are available for the treatment of this condition, it continues to be life-threatening, and its long-term treatment is expensive. On the other hand, many natural compounds present in food have beneficial effects on several cardiovascular conditions. Several studies have explored many of the potential beneficial effects of natural plant products on PAH. However, the mechanisms by which natural products, such as nutraceuticals, exert protective and therapeutic effects on PAH are not fully understood. In this review, we analyze the current knowledge on nutraceuticals and their potential use in the protection and treatment of PAH, as well as whether nutraceuticals could enhance the effects of drugs used in PAH through similar mechanisms.


Asunto(s)
Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Animales , Suplementos Dietéticos , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Arteria Pulmonar/efectos de los fármacos
8.
Int J Mol Sci ; 20(22)2019 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-31744099

RESUMEN

Chronic vasopressin secretion induced by recurrent mild heat stress exposure is significantly enhanced by limited rehydration with a fructose-containing beverage both in rodents and in humans. Moreover, this effect has been associated with upregulation of the polyol-fructokinase pathway and increased renal oxidative stress. Previously, we have shown that pharmacological inhibition of both V1a and V2 vasopressin receptors with conivaptan improved such renal alterations. The aim of this study was to evaluate the independent contributions of V1a and V2 receptors to the renal damage caused by mild heat stress and limited rehydration with a fructose-containing beverage. Osmotic minipumps were used to deliver either relcovaptan (0.64 mg/day) or tolvaptan (0.25 mg/day) in male Wistar rats for two weeks. Corresponding dilution vehicles were used as controls. To induce dehydration, rats were exposed to mild heat stress (37 °C for 1 h, Monday to Friday). All groups received a 10% fructose solution as a rehydration fluid for 2 h after mild heat stress. For the remainder of the day and on weekends, rats received tap water. The independent blockade of either the V1a or the V2 receptor prevented renal damage, reduced oxidative stress, and decreased plasma cortisol and systemic inflammation. However, the beneficial effects were regulated by different mechanisms. Tolvaptan inhibited polyol-fructokinase pathway overactivation, while relcovaptan prevented upregulation of the renin-angiotensin system and SGK1 expression. These data suggest that both V1a and V2 receptors participate in renal damage caused by heat stress-induced dehydration when fructose-containing beverages are used as rehydration fluids.


Asunto(s)
Bebidas/análisis , Fructosa/metabolismo , Respuesta al Choque Térmico , Receptores de Vasopresinas/metabolismo , Animales , Fluidoterapia , Respuesta al Choque Térmico/efectos de los fármacos , Hidrocortisona/sangre , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Indoles/farmacología , Corteza Renal/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Pirrolidinas/farmacología , Ratas , Ratas Wistar , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Sistema Renina-Angiotensina/efectos de los fármacos , Temperatura , Tolvaptán/farmacología , Regulación hacia Arriba/efectos de los fármacos
9.
Am J Nephrol ; 48(5): 339-348, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30391956

RESUMEN

BACKGROUND: Heat stress and rhabdomyolysis are major risk factors for the occurrence of repeated acute kidney injury in workers exposed to heat and strenuous work. These episodes, in turn, may progress to chronic kidney disease. OBJECTIVE: The purpose of this study was to test the effect of allopurinol (AP) and sodium bicarbonate on the kidney injury induced by recurrent heat stress dehydration with concomitant repeated episodes of rhabdomyolysis. METHODS: The model consisted of heat stress exposure (1 h, 37°C) plus rhabdomyolysis (R) induced by repetitive IM injections of glycerol (7.5 mL/kg BW days) in the rat. In addition, to replicate the human situation, uricase was inhibited (oxonic acid [OA] 750 mg/K/d) to increase uric acid (UA) levels. Additional groups were treated either with AP 150 mg/L, n = 10, bicarbonate (BC; 160 mM, n = 10), or both (AP + BC, n = 10) in drinking water. We also included 2 control groups consisting of normal controls (N-Ref, n = 5) and uricase-inhibited rats (OA, n = 5) that were not exposed to heat or muscle injury. Groups were studied for 35 days. RESULTS: Uricase-inhibited rats exposed to heat and rhabdomyolysis developed pathway and increased intrarenal oxidative stress and inflammasome activation. Kidney injury could be largely prevented by AP, and also BC, although the treatments were not synergistic. CONCLUSION: Increased levels of UA may play an important role in the renal alterations induced by heat stress and continuous episodes of rhabdomyolysis. Therefore, treatments aimed to reduce hyperuricemia may help to decrease the renal burden in these conditions. Clinical trials are suggested to test whether this is also true in humans.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Alopurinol/administración & dosificación , Respuesta al Choque Térmico , Rabdomiólisis/tratamiento farmacológico , Bicarbonato de Sodio/efectos adversos , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Glicerol/administración & dosificación , Glicerol/toxicidad , Calor/efectos adversos , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Masculino , Exposición Profesional/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Ácido Oxónico/administración & dosificación , Ratas , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/prevención & control , Rabdomiólisis/sangre , Rabdomiólisis/etiología , Resultado del Tratamiento , Urato Oxidasa/antagonistas & inhibidores , Urato Oxidasa/metabolismo , Ácido Úrico/sangre , Ácido Úrico/metabolismo
10.
Int J Mol Sci ; 19(10)2018 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-30314265

RESUMEN

Diabetic nephropathy (DN) is presently the primary cause of chronic kidney disease and end-stage renal disease (ESRD). It has been suggested that inflammation and oxidative stress, in addition to or in concert with the metabolic changes, plays an important role in the maintenance and progression of the disease. Therefore, attenuating or blocking these mechanisms may be a therapeutic target to delay the progression of the disease. Diallyl thiosulfinate (allicin), a compound derived from garlic, inhibits free radical formation, increases glutathione synthesis and decreases the levels of proinflammatory molecules in vitro. This research aimed to assess the effect of allicin on oxidative stress and inflammation-induced diabetes. Animals were divided into control and diabetes (streptozotocin 50 mg/kg i.p.), and maintained for 30 days. After 30 days, the group of diabetic animals was subdivided into diabetes and allicin-treated diabetes (16 mg/kg/day oral gavage). The three experimental groups were maintained for another month. We analyzed the status of renal function, oxidative stress and proinflammatory cytokines. The untreated diabetic group showed hyperglycemia and increased diuresis, creatinine clearance, proteinuria, glycosuria and urinary excretion of N-acetyl-ß-d-glucosaminidase (NAG), as well as increased oxidative stress and the expression of interleukin 1ß (IL-1ß), IL-6, nuclear factor kappa beta (NFκß) and transforming growth factor-ß1 (TGF-ß1) in plasma and kidney. In contrast, the inhibitor of NFκß (Iκß) is decreased in the cortex. It has been demonstrated that the allicin treatment decreases hyperglycemia, polyuria, and NAG excretion. The oxidative stress and proinflammatory cytokines were also reduced by the allicin treatment. In conclusion, allicin delays the progression of diabetic nephropathy through antioxidant and anti-inflammatory mechanisms.


Asunto(s)
Nefropatías Diabéticas/inmunología , Nefropatías Diabéticas/metabolismo , Suplementos Dietéticos , Ajo/química , Inmunomodulación/efectos de los fármacos , Extractos Vegetales/farmacología , Ácidos Sulfínicos/farmacología , Animales , Antioxidantes/farmacología , Biomarcadores , Glucemia , Creatinina/sangre , Citocinas/sangre , Citocinas/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Disulfuros , Tasa de Filtración Glomerular , Mediadores de Inflamación/sangre , Mediadores de Inflamación/metabolismo , Pruebas de Función Renal , Peroxidación de Lípido/efectos de los fármacos , Masculino , Modelos Biológicos , Estrés Oxidativo/efectos de los fármacos , Ratas , Insuficiencia Renal Crónica/metabolismo
11.
Int J Mol Sci ; 18(9)2017 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-28926934

RESUMEN

Recent studies suggest that allicin may play a role in chronic kidney disease (CKD), reducing hypertension and oxidative stress and improving renal dysfunction. In the present study, CKD was induced by 5/6 nephrectomy and the animals were divided into four treatment groups as follows: control (C), CKD, CKD+allicin (40 mg/kg pathway oral) (CKDA), and CKD+Losartan (20 mg/kg) (CKDL). After CKD induction, the rats developed hypertension from week 3 to the end of the study. This was associated with increased creatinine and blood urea nitrogen (BUN) levels in serum, increased albuminuria, increased urinary excretion of N-acetyl-ß-d-glucosaminidase (NAG), increased nephrin expression, and incrased histological alterations in the cortex. The levels of angiotensin receptors and endothelial nitric oxide synthase (eNOS) were decreased in the renal cortex from the CKD group. Otherwise, lipid and protein oxidation were higher in the CKD group than in the control group. A disturbance was observed in the expression levels of the nuclear factor erythroid 2-related factor 2/Kelch ECH associating protein 1 system (Nrf2/keap1) and the antioxidant enzymes catalase, superoxide dismutase, and heme oxygenase-1. Allicin or losartan treatments relieved renal dysfunction, hypertension, and oxidative stress. In addition, both treatments showed the same efficacy on the expression of angiotensin receptors, the nephrin, Nrf2/keap1 pathway, and eNOS. Further in silico analyses suggest that allicin and losartan could have a common mechanism involving interaction with AT1 receptors. Allicin showed antihypertensive, antioxidant, and nephroprotective effects. The beneficial effects showed by allicin are similar, or even better, than those of losartan. In fact, the effect of allicin on blood pressure and renal function is comparable to reductions seen with losartan, a prescription drug commonly used as a first-line therapy.


Asunto(s)
Antihipertensivos/uso terapéutico , Antioxidantes/uso terapéutico , Losartán/uso terapéutico , Insuficiencia Renal Crónica/tratamiento farmacológico , Ácidos Sulfínicos/uso terapéutico , Acetilglucosaminidasa/orina , Animales , Antihipertensivos/administración & dosificación , Antihipertensivos/efectos adversos , Antioxidantes/administración & dosificación , Antioxidantes/efectos adversos , Creatinina/sangre , Disulfuros , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Riñón/metabolismo , Losartán/administración & dosificación , Losartán/efectos adversos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo , Ratas , Ratas Wistar , Receptores de Angiotensina/genética , Receptores de Angiotensina/metabolismo , Ácidos Sulfínicos/administración & dosificación , Ácidos Sulfínicos/efectos adversos , Urea/sangre
12.
Biomol Biomed ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907737

RESUMEN

Diabetes mellitus (DM) is a chronic disease characterized by persistent hyperglycemia, which is a major contributing factor to chronic kidney disease (CKD), end-stage renal disease (ESRD), and cardiovascular-related deaths. There are several mechanisms leading to kidney injury, with hyperglycemia well known to stimulate oxidative stress, inflammation, tissue remodeling, and dysfunction in the vascular system and organs. Increased reactive oxygen species (ROS) decrease the bioavailability of vasodilators while increasing vasoconstrictors, resulting in an imbalance in vascular tone and the development of hypertension. Treatments for diabetes focus on controlling blood glucose levels, but due to the complexity of the disease, multiple drugs are often required to successfully delay the development of microvascular complications, including CKD. In this context, naringenin, a flavonoid found in citrus fruits, has demonstrated anti-inflammatory, anti-fibrotic, and antioxidant effects, suggesting its potential to protect the kidney from deleterious effects of diabetes. This review aims to summarize the scientific evidence of the effects of naringenin as a potential therapeutic option for diabetes-induced CKD.

13.
J Clin Med ; 13(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38541826

RESUMEN

Background: Rejection continues to be the main cause of renal graft loss. Currently, the gold standard for diagnosis is an allograft biopsy; however, because it is time-consuming, costly, and invasive, the pursuit of novel biomarkers has gained interest. Variation in the expressions of miRNAs is currently considered a probable biomarker for the diagnosis of acute rejection. This study aimed to determine whether miR-150-5p in serum is related to microvascular damage in patients with acute antibody-mediated rejection (ABMR). Methods: A total of 27 patients who underwent renal transplantation (RT) with and without ABMR were included in the study. We performed the quantification of hsa-miR-150-5p, hsa-miR-155, hsa-miR-21, hsa-miR-126, and hsa-miR-1 in plasma by RT-qPCR. The expressions between the groups and their correlations with the histological characteristics of the patients with ABMR were also investigated. Results: miR-150-5p significantly increased in the plasma of patients with rejection (p < 0.05), and the changes in miR-150-5p were directly correlated with microvascular inflammation in the allograft biopsies. Clinical utility was determined by ROC analysis with an area under the curve of 0.873. Conclusions: Our results show that the patients with RT with ABMR exhibited increased expression of miR-150-5p compared to patients without rejection, which could have clinical consequences, as well as probable utility in the diagnosis of ABMR, and bioinformatics may help in unraveling the molecular mechanisms underlying ABMR conditions.

14.
PeerJ ; 11: e16132, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37786577

RESUMEN

Background: Recent studies have suggested that metabolic syndrome (MS) encompasses a group of risk factors for developing chronic kidney disease (CKD). This work aimed to evaluate the antioxidant and anti-inflammatory effects of allicin in the kidney from an experimental model of MS. Methods: Male Wistar rats (220-250 g) were used, and three experimental groups (n = 6) were formed: control (C), metabolic syndrome (MS), and MS treated with allicin (16 mg/Kg/day, gastric gavage) (MS+A). MS was considered when an increase of 20% in at least three parameters (body weight, systolic blood pressure (SBP), fasting blood glucose (FBG), or dyslipidemia) was observed compared to the C group. After the MS diagnosis, allicin was administered for 30 days. Results: Before the treatment with allicin, the MS group showed more significant body weight gain, increased SBP, and FBG, glucose intolerance, and dyslipidemia. In addition, increased markers of kidney damage in urine and blood. Moreover, the MS increased oxidative stress and inflammation in the kidney compared to group C. The allicin treatment prevented further weight gain, reduced SBP, FBG, glucose intolerance, and dyslipidemia. Also, markers of kidney damage in urine and blood were decreased. Further, the oxidative stress and inflammation were decreased in the renal cortex of the MS+A compared to the MS group. Conclusion: Allicin exerts its beneficial effects on the metabolic syndrome by considerably reducing systemic and renal inflammation as well as the oxidative stress. These effects were mediated through the Nrf2 pathway. The results suggest allicin may be a therapeutic alternative for treating kidney injury induced by the metabolic syndrome risk factors.


Asunto(s)
Intolerancia a la Glucosa , Síndrome Metabólico , Insuficiencia Renal Crónica , Ratas , Animales , Masculino , Antioxidantes/farmacología , Síndrome Metabólico/tratamiento farmacológico , Intolerancia a la Glucosa/tratamiento farmacológico , Ratas Wistar , Riñón , Insuficiencia Renal Crónica/tratamiento farmacológico , Peso Corporal , Modelos Teóricos , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología
15.
Antioxidants (Basel) ; 12(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37237888

RESUMEN

There is increasing evidence that either ingested or produced fructose may have a role in metabolic syndrome. While not commonly considered a criterion for metabolic syndrome, cardiac hypertrophy is often associated with metabolic syndrome, and its presence carries increased cardiovascular risk. Recently it has been shown that fructose and fructokinase C (KHK) can be induced in cardiac tissue. Here we tested whether diet-induced metabolic syndrome causes heart disease associated with increased fructose content and metabolism and whether it can be prevented with a fructokinase inhibitor (osthole). Male Wistar rats were provided a control diet (C) or high fat/sugar diet for 30 days (MS), with half of the latter group receiving osthol (MS+OT, 40 mg/kg/d). The Western diet increased fructose, uric acid, and triglyceride concentrations in cardiac tissue associated with cardiac hypertrophy, local hypoxia, oxidative stress, and increased activity and expression of KHK in cardiac tissue. Osthole reversed these effects. We conclude that the cardiac changes in metabolic syndrome involve increased fructose content and its metabolism and that blocking fructokinase can provide cardiac benefit through the inhibition of KHK with modulation of hypoxia, oxidative stress, hypertrophy, and fibrosis.

16.
Arch Cardiol Mex ; 92(3): 362-370, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35772125

RESUMEN

Las enfermedades cardiovasculares (ECV) comprenden un grupo de enfermedades cuyo denominador común es la afectación de vasos sanguíneos, corazón y ritmo cardiaco. El tratamiento de las ECV representa costos muy altos para los sistemas de salud y está enfocado en el control de los factores de riesgo. A pesar de existir una gran variedad de fármacos para el tratamiento de las ECV, estas continúan siendo las principales causas de mortalidad, posiblemente debido a que su origen es multifactorial y por ello se requiere de más de un fármaco. En este contexto, la alicina, un compuesto derivado del ajo, ha mostrado regular la expresión de vías de señalización y factores de riesgo asociados a la progresión de las ECV. Por ello el objetivo del presente trabajo es revisar los mecanismos celulares y moleculares por medio de los cuales la alicina ejerce sus efectos terapéuticos y describir las evidencias científicas del porqué la alicina podría representar un potencial candidato para coadyuvar en el tratamiento de las ECV.Cardiovascular diseases (CVD) include a group of diseases whose common denominator is the affection of the blood vessels, heart, and heart rate. The treatment of CVD represents high costs to the health systems and is focused on the control of risk factors. Despite the existence of a great variety of treatments of the CVD, these continue as the main cause of mortality mainly due to the multifactorial origin, and therefore more than one drug is required. In this context, allicin, a compound derived from garlic, has shown regulate the expression of signaling pathways and risk factors associated with the progression of CVD. Therefore, the objective of this work is to review the cellular and molecular mechanisms through which allicin exert its therapeutic effects and to describe the scientific evidences why allicin represents a potential candidate to assist in the treatment of CVD.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Cardiovasculares/epidemiología , Humanos , Estudios Retrospectivos , Factores de Riesgo
17.
Antioxidants (Basel) ; 11(2)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35204238

RESUMEN

Chronic kidney disease (CKD) is a world health problem increasing dramatically. The onset of CKD is driven by several mechanisms; among them, metabolic reprogramming and changes in redox signaling play critical roles in the advancement of inflammation and the subsequent fibrosis, common pathologies observed in all forms of CKD. Extracellular vesicles (EVs) are cell-derived membrane packages strongly associated with cell-cell communication since they transfer several biomolecules that serve as mediators in redox signaling and metabolic reprogramming in the recipient cells. Recent studies suggest that EVs, especially exosomes, the smallest subtype of EVs, play a fundamental role in spreading renal injury in CKD. Therefore, this review summarizes the current information about EVs and their cargos' participation in metabolic reprogramming and mitochondrial impairment in CKD and their role in redox signaling changes. Finally, we analyze the effects of these EV-induced changes in the amplification of inflammatory and fibrotic processes in the progression of CKD. Furthermore, the data suggest that the identification of the signaling pathways involved in the release of EVs and their cargo under pathological renal conditions can allow the identification of new possible targets of injury spread, with the goal of preventing CKD progression.

18.
Nutrients ; 14(10)2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35631211

RESUMEN

Improper hydration habits are commonly disregarded as a risk factor for the development of chronic diseases. Consuming an intake of water below recommendations (underhydration) in addition to the substitution of sugar-sweetened beverages (SSB) for water are habits deeply ingrained in several countries. This behavior is due to voluntary and involuntary dehydration; and because young children are exposed to SSB, the preference for a sweet taste is profoundly implanted in the brain. Underhydration and SSB intake lead to mild hyperosmolarity, which stimulates biologic processes, such as the stimulation of vasopressin and the polyol-fructose pathway, which restore osmolarity to normal but at the expense of the continued activation of these biological systems. Unfortunately, chronic activation of the vasopressin and polyol-fructose pathways has been shown to mediate many diseases, such as obesity, diabetes, metabolic syndrome, chronic kidney disease, and cardiovascular disease. It is therefore urgent that we encourage educational and promotional campaigns that promote the evaluation of personal hydration status, a greater intake of potable water, and a reduction or complete halting of the drinking of SSB.


Asunto(s)
Enfermedades Cardiovasculares , Agua Potable , Bebidas/análisis , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Niño , Preescolar , Fructosa/efectos adversos , Hábitos , Humanos
19.
Clin Chim Acta ; 531: 368-374, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35533716

RESUMEN

BACKGROUND: Studies have focused on the search of novel biomarkers that allow to easily identify dysfunctional adipose tissue (AT). Uric acid (UA) could be produced and reabsorbed by AT. It has been suggested that the increases of UA concentrations participates in AT dysfunction. We investigated the association of UA with morpho-functional adipose tissue markers in apparently healthy subjects. METHODS: Forty apparently healthy individuals were included. Dietary habits and anthropometrical features were evaluated. Circulating concentrations of UA, adiponectin, leptin, and plasminogen activator inhibitor-1 (PAI-1) were quantified. Periumbilical subcutaneous AT samples were obtained and adipocyte number, adipocyte area, and macrophages content were assessed. RESULTS: The present study included 40 healthy subjects (67% women) with an average age of 57 ± 9 y, BMI of 26 ± 4 (kg/m2). UA showed a significant association with the number and mean area of adipocytes, macrophages number, adiponectin, and PAI-1. Although UA was independently associated with the number and mean area of adipocytes, macrophages number, adiponectin into the adjusted multivariable model. CONCLUSION: UA concentrations are associated with morpho-functional adipose tissue markers. Our results underscore the importance of UA as one earlier instigator of adipose tissue dysfunction in subjects without metabolic abnormalities.


Asunto(s)
Inhibidor 1 de Activador Plasminogénico , Ácido Úrico , Adipoquinas/metabolismo , Adiponectina/metabolismo , Tejido Adiposo/metabolismo , Anciano , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Inhibidor 1 de Activador Plasminogénico/metabolismo , Ácido Úrico/metabolismo
20.
Life Sci ; 289: 120227, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34921866

RESUMEN

BACKGROUND: Ischemic kidney injury is a common clinical condition resulting from transient interruption of the kidney's normal blood flow, leading to oxidative stress, inflammation, and kidney dysfunction. The ketogenic diet (KD), a low-carbohydrate, high-fat diet that stimulates endogenous ketone body production, has potent antioxidant and anti-inflammatory effects in distinct tissues and might thus protect the kidney against ischemia and reperfusion (IR) injury. MAIN METHODS: Male Wistar rats were fed a KD or a control diet (CD) for three days before analyzing metabolic parameters or testing nephroprotection. We used two different models of kidney IR injury and conducted biochemical, histological, and Western blot analyses at 24 h and two weeks after surgery. KEY FINDINGS: Acute KD feeding caused protein acetylation, liver AMPK activation, and increased resistance to IR-induced kidney injury. At 24 h after IR, rats on KD presented reduced tubular damage and improved kidney functioning compared to rats fed with a CD. KD attenuated oxidative damage (protein nitration, 4-HNE adducts, and 8-OHdG), increased antioxidant defenses (GPx and SOD activity), and reduced inflammatory intermediates (IL6, TNFα, MCP1), p50 NF-κB expression, and cellular infiltration. Also, KD prevented interstitial fibrosis development at two weeks, up-regulation of HSP70, and chronic Klotho deficiency. SIGNIFICANCE: Our findings demonstrate for the first time that short-term KD increases tolerance to experimental kidney ischemia, opening the opportunity for future therapeutic exploration of a dietary preconditioning strategy to convey kidney protection in the clinic.


Asunto(s)
Dieta Cetogénica , Regulación de la Expresión Génica , Estrés Oxidativo , Insuficiencia Renal Crónica , Animales , Biomarcadores/metabolismo , Inflamación/dietoterapia , Inflamación/metabolismo , Inflamación/patología , Isquemia/dietoterapia , Isquemia/metabolismo , Isquemia/patología , Masculino , Ratas , Ratas Wistar , Insuficiencia Renal Crónica/dietoterapia , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA