RESUMEN
Insulin resistance (IR) underlies metabolic disease. Visceral, but not subcutaneous, white adipose tissue (WAT) has been linked to the development of IR, potentially due to differences in regulatory protein abundance. Here we investigate how protein levels are changed in IR in different WAT depots by developing a targeted proteomics approach to quantitatively compare the abundance of 42 nuclear proteins in subcutaneous and visceral WAT from a commonly used insulin-resistant mouse model, Lepr(db/db), and from C57BL/6J control mice. The most differentially expressed proteins were important in adipogenesis, as confirmed by siRNA-mediated depletion experiments, suggesting a defect in adipogenesis in visceral, but not subcutaneous, insulin-resistant WAT. Furthermore, differentiation of visceral, but not subcutaneous, insulin-resistant stromal vascular cells (SVCs) was impaired. In an in vitro approach to understand the cause of this impaired differentiation, we compared insulin-resistant visceral SVCs to preadipocyte cell culture models made insulin resistant by different stimuli. The insulin-resistant visceral SVC protein abundance profile correlated most with preadipocyte cell culture cells treated with both palmitate and TNFα. Together, our study introduces a method to simultaneously measure and quantitatively compare nuclear protein expression patterns in primary adipose tissue and adipocyte cell cultures, which we show can reveal relationships between differentiation and disease states of different adipocyte tissue types.
Asunto(s)
Tejido Adiposo Blanco/metabolismo , Resistencia a la Insulina , Proteínas Nucleares/metabolismo , Tejido Adiposo Blanco/patología , Animales , Línea Celular , Dieta Alta en Grasa/efectos adversos , Masculino , Espectrometría de Masas , Ratones Endogámicos C57BL , Ratones ObesosRESUMEN
IRE1α is an endoplasmic reticulum (ER) localized signaling molecule critical for unfolded protein response. During ER stress, IRE1α activation is induced by oligomerization and autophosphorylation in its cytosolic domain, a process triggered by dissociation of an ER luminal chaperone, binding immunoglobulin-protein (BiP), from IRE1α. In addition, inhibition of a cytosolic chaperone protein Hsp90 also induces IRE1α oligomerization and activation in the absence of an ER stressor. Here, we report that the Hsp90 cochaperone Cdc37 directly interacts with IRE1α through a highly conserved cytosolic motif of IRE1α. Cdc37 knockdown or disruption of Cdc37 interaction with IRE1α significantly increased basal IRE1α activity. In INS-1 cells, Hsp90 inhibition and disruption of IRE1α-Cdc37 interaction both induced an ER stress response and impaired insulin synthesis and secretion. These data suggest that Cdc37-mediated direct interaction between Hsp90/Cdc37 and an IRE1α cytosolic motif is important to maintain basal IRE1α activity and contributes to normal protein homeostasis and unfolded protein response under physiological stimulation.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Endorribonucleasas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/biosíntesis , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Células Cultivadas , Citosol/metabolismo , Dimerización , Endorribonucleasas/química , Endorribonucleasas/genética , Glucosa/farmacología , Células HeLa , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Datos de Secuencia Molecular , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiologíaRESUMEN
RATIONALE: p38 is an important stress activated protein kinase involved in gene regulation, proliferation, differentiation, and cell death regulation in heart. p38 kinase activity can be induced through canonical pathway via upstream kinases or by noncanonical autophosphorylation. The intracellular p38 kinase activity is tightly regulated and maintained at low level under basal condition. The underlying regulatory mechanism for canonical p38 kinase activation is well-studied, but the regulation of noncanonical p38 autophosphorylation remains poorly understood. OBJECTIVE: We investigated the molecular basis for the regulation of noncanonical p38 autophosphorylation and its potential functional impact in cardiomyocytes. METHODS AND RESULTS: Using both proteomic and biochemical tools, we established that heat shock protein (Hsp)90-Cdc37 chaperones are part of the p38alpha signaling complex in mammalian cells both in vitro and in vivo. The Hsp90-Cdc37 chaperone complex interacts with p38 via direct binding between p38 and Cdc37. Cdc37 expression is both sufficient and necessary to suppress noncanonical p38 activation via autophosphorylation at either basal state or under TAB1 (TAK1 binding protein-1) induction. In contrast, Cdc37 expression has no impact on p38 activation by canonical upstream kinase MKK3 or oxidative stress. Furthermore, Hsp90 inhibition results in p38 activation via autophosphorylation, and p38 activity contribute to apoptotic cell death induced by Hsp90 inhibition. CONCLUSION: Our study has revealed a so far uncharacterized function of Hsp90-Cdc37 as an endogenous regulator of noncanonical p38 activity.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Chaperonas Moleculares/metabolismo , Miocitos Cardíacos/enzimología , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis , Benzoquinonas/farmacología , Células COS , Proteínas de Ciclo Celular/genética , Supervivencia Celular , Chaperoninas/genética , Chlorocebus aethiops , Activación Enzimática , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/genética , Células HeLa , Humanos , Lactamas Macrocíclicas/farmacología , MAP Quinasa Quinasa 3/metabolismo , Ratones , Ratones Transgénicos , Proteína Quinasa 14 Activada por Mitógenos/genética , Chaperonas Moleculares/genética , Complejos Multiproteicos , Mutación , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo , Fosforilación , Unión Proteica , Interferencia de ARN , Ratas , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Tiempo , TransfecciónRESUMEN
Our objective in work presented here was to understand the mechanisms by which activated p38alpha MAPK depresses myocardial contractility. To test the hypothesis that activation of p38 MAPK directly influences sarcomeric function, we used transgenic mouse models with hearts in which p38 MAPK was constitutively turned on by an upstream activator (MKK6bE). These hearts demonstrated a significant depression in ejection fraction after induction of the transgene. We also studied hearts of mice expressing a dominant negative p38alpha MAPK. Simultaneous determination of tension and ATPase activity of detergent-skinned fiber bundles from left ventricular papillary muscle demonstrated a significant inhibition of both maximum tension and ATPase activity in the transgenic-MKK6bE hearts. Fibers from hearts expressing dominant negative p38alpha MAPK demonstrated no significant change in tension or ATPase activity. There were no significant changes in phosphorylation level of troponin-T3 and troponin-T4, or myosin light chain 2. However, compared with controls, there was a significant depression in levels of phosphorylation of alpha-tropomyosin and troponin I in fiber bundles from transgenic-MKK6bE hearts, but not from dominant negative p38alpha MAPK hearts. Our experiments also showed that p38alpha MAPK colocalizes with alpha-actinin at the Z-disc and complexes with protein phosphatases (PP2alpha, PP2beta). These data are the first to indicate that chronic activation of p38alpha MAPK directly depresses sarcomeric function in association with decreased phosphorylation of alpha-tropomyosin.
Asunto(s)
Citoesqueleto de Actina/fisiología , Contracción Miocárdica/fisiología , Miosinas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Sarcómeros/fisiología , Tropomiosina/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , Secuencia de Aminoácidos , Animales , Calcio/farmacología , Señalización del Calcio , Conectina , Activación Enzimática , Inducción Enzimática/genética , Proteínas de Choque Térmico HSP27 , Proteínas de Choque Térmico/análisis , Inmunoprecipitación , Contracción Isométrica/fisiología , MAP Quinasa Quinasa 6/genética , MAP Quinasa Quinasa 6/fisiología , Espectrometría de Masas , Ratones , Ratones Transgénicos , Modelos Cardiovasculares , Chaperonas Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos , Proteínas Musculares/aislamiento & purificación , Proteínas Musculares/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas de Neoplasias/análisis , Músculos Papilares/fisiología , Fosfoproteínas Fosfatasas/aislamiento & purificación , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Mapeo de Interacción de Proteínas , Proteína Fosfatasa 2C , Transporte de Proteínas , Proteínas Recombinantes de Fusión/fisiología , Sarcómeros/efectos de los fármacos , Sarcómeros/ultraestructura , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transgenes , Troponina I/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/biosíntesis , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/aislamiento & purificaciónRESUMEN
Three major MAP kinase signaling cascades, ERK, p38, and JNK, play significant roles in the development of cardiac hypertrophy and heart failure in response to external stress and neural/hormonal stimuli. To study the specific function of each MAP kinase branch in adult heart, we have generated three transgenic mouse models with cardiac-specific and temporally regulated expression of activated mutants of Ras, MAP kinase kinase (MKK)3, and MKK7, which are selective upstream activators for ERK, p38, and JNK, respectively. Gene expression profiles in transgenic adult hearts were determined using cDNA microarrays at both early (4-7 days) and late (2-4 wk) time points following transgene induction. From this study, we revealed common changes in gene expression among the three models, particularly involving extracellular matrix remodeling. However, distinct expression patterns characteristic for each pathway were also identified in cell signaling, growth, and physiology. In addition, genes with dynamic expression differences between early vs. late stages illustrated primary vs. secondary changes on MAP kinase activation in adult hearts. These results provide an overview to both short-term and long-term effects of MAP kinase activation in heart and support some common as well as unique roles for each MAP kinase cascade in the development of heart failure.
Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Miocardio/enzimología , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa 3/genética , MAP Quinasa Quinasa 3/metabolismo , MAP Quinasa Quinasa 7/genética , MAP Quinasa Quinasa 7/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Factores de Tiempo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismoRESUMEN
Mammalian tissue size is maintained by slow replacement of de-differentiating and dying cells. For adipocytes, key regulators of glucose and lipid metabolism, the renewal rate is only 10% per year. We used computational modeling, quantitative mass spectrometry, and single-cell microscopy to show that cell-to-cell variability, or noise, in protein abundance acts within a network of more than six positive feedbacks to permit pre-adipocytes to differentiate at very low rates. This reconciles two fundamental opposing requirements: High cell-to-cell signal variability is needed to generate very low differentiation rates, whereas low signal variability is needed to prevent differentiated cells from de-differentiating. Higher eukaryotes can thus control low rates of near irreversible cell fate decisions through a balancing act between noise and ultrahigh feedback connectivity.
Asunto(s)
Adipocitos/citología , Adipogénesis , Modelos Biológicos , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Comunicación Celular , Diferenciación Celular , Línea Celular , Simulación por Computador , Retroalimentación Fisiológica , Espectrometría de Masas , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo , ARN Interferente Pequeño/genética , Análisis de la Célula Individual , Células Madre/citologíaRESUMEN
We recently reported that the PPM1l gene encodes an endoplasmic reticulum (ER) membrane targeted protein phosphatase (named PP2Ce) with highly specific activity towards Inositol-requiring protein-1 (IRE1) and regulates the functional outcome of ER stress. In the present report, we found that the PP2Ce protein is highly expressed in lactating epithelium of the mammary gland. Loss of PP2Ce in vivo impairs physiological unfolded protein response (UPR) and induces stress kinase activation, resulting in loss of milk production and induction of epithelial apoptosis in the lactating mammary gland. This study provides the first in vivo evidence that PP2Ce is an essential regulator of normal lactation, possibly involving IRE1 signaling and ER stress regulation in mammary epithelium.
Asunto(s)
Estrés del Retículo Endoplásmico , Lactancia , Glándulas Mamarias Animales/fisiología , Proteínas de la Membrana/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Apoptosis , Femenino , Humanos , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/ultraestructura , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoproteínas Fosfatasas/análisis , Fosfoproteínas Fosfatasas/genética , Periodo Posparto , Proteína Fosfatasa 2C , Transducción de Señal , Respuesta de Proteína DesplegadaRESUMEN
The protein phosphatase 1-like gene (PPM1l) was identified as causal gene for obesity and metabolic abnormalities in mice. However, the underlying mechanisms were unknown. In this report, we find PPM1l encodes an endoplasmic reticulum (ER) membrane targeted protein phosphatase (PP2Ce) and has specific activity to basal and ER stress induced auto-phosphorylation of Inositol-REquiring protein-1 (IRE1). PP2Ce inactivation resulted in elevated IRE1 phosphorylation and higher expression of XBP-1, CHOP, and BiP at basal. However, ER stress stimulated XBP-1 and BiP induction was blunted while CHOP induction was further enhanced in PP2Ce null cells. PP2Ce protein levels are significantly induced during adipogenesis in vitro and are necessary for normal adipocyte maturation. Finally, we provide evidence that common genetic variation of PPM11 gene is significantly associated with human lipid profile. Therefore, PPM1l mediated IRE1 regulation and downstream ER stress signaling is a plausible molecular basis for its role in metabolic regulation and disorder.