Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
BMC Bioinformatics ; 25(1): 114, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491365

RESUMEN

BACKGROUND: Neuroscience research in Drosophila is benefiting from large-scale connectomics efforts using electron microscopy (EM) to reveal all the neurons in a brain and their connections. To exploit this knowledge base, researchers relate a connectome's structure to neuronal function, often by studying individual neuron cell types. Vast libraries of fly driver lines expressing fluorescent reporter genes in sets of neurons have been created and imaged using confocal light microscopy (LM), enabling the targeting of neurons for experimentation. However, creating a fly line for driving gene expression within a single neuron found in an EM connectome remains a challenge, as it typically requires identifying a pair of driver lines where only the neuron of interest is expressed in both. This task and other emerging scientific workflows require finding similar neurons across large data sets imaged using different modalities. RESULTS: Here, we present NeuronBridge, a web application for easily and rapidly finding putative morphological matches between large data sets of neurons imaged using different modalities. We describe the functionality and construction of the NeuronBridge service, including its user-friendly graphical user interface (GUI), extensible data model, serverless cloud architecture, and massively parallel image search engine. CONCLUSIONS: NeuronBridge fills a critical gap in the Drosophila research workflow and is used by hundreds of neuroscience researchers around the world. We offer our software code, open APIs, and processed data sets for integration and reuse, and provide the application as a service at http://neuronbridge.janelia.org .


Asunto(s)
Conectoma , Programas Informáticos , Animales , Neuronas , Microscopía Electrónica , Drosophila
2.
J Cell Sci ; 130(1): 269-277, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27149923

RESUMEN

Epithelia provide a crucial protective barrier for our organs and are also the sites where the majority of carcinomas form. Most studies on epithelia and carcinomas use cell culture or organisms where high-resolution live imaging is inaccessible without invasive techniques. Here, we introduce the developing zebrafish epidermis as an excellent in vivo model system for studying a living epithelium. We developed tools to fluorescently tag specific epithelial cell types and express genes in a mosaic fashion using five Gal4 lines identified from an enhancer trap screen. When crossed to a variety of UAS effector lines, we can now track, ablate or monitor single cells at sub-cellular resolution. Using photo-cleavable morpholino oligonucleotides that target gal4, we can also express genes in a mosaic fashion at specific times during development. Together, this system provides an excellent in vivo alternative to tissue culture cells, without the intrinsic concerns of culture conditions or transformation, and enables the investigation of distinct cell types within living epithelial tissues.


Asunto(s)
Técnicas Citológicas/métodos , Células Epidérmicas , Pez Cebra/metabolismo , Animales , Muerte Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Cruzamientos Genéticos , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos/genética , Epidermis/efectos de los fármacos , Epidermis/ultraestructura , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Imagenología Tridimensional , Masculino , Morfolinos/farmacología , Factores de Tiempo , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
Nature ; 484(7395): 546-9, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22504183

RESUMEN

For an epithelium to provide a protective barrier, it must maintain homeostatic cell numbers by matching the number of dividing cells with the number of dying cells. Although compensatory cell division can be triggered by dying cells, it is unknown how cell death might relieve overcrowding due to proliferation. When we trigger apoptosis in epithelia, dying cells are extruded to preserve a functional barrier. Extrusion occurs by cells destined to die signalling to surrounding epithelial cells to contract an actomyosin ring that squeezes the dying cell out. However, it is not clear what drives cell death during normal homeostasis. Here we show in human, canine and zebrafish cells that overcrowding due to proliferation and migration induces extrusion of live cells to control epithelial cell numbers. Extrusion of live cells occurs at sites where the highest crowding occurs in vivo and can be induced by experimentally overcrowding monolayers in vitro. Like apoptotic cell extrusion, live cell extrusion resulting from overcrowding also requires sphingosine 1-phosphate signalling and Rho-kinase-dependent myosin contraction, but is distinguished by signalling through stretch-activated channels. Moreover, disruption of a stretch-activated channel, Piezo1, in zebrafish prevents extrusion and leads to the formation of epithelial cell masses. Our findings reveal that during homeostatic turnover, growth and division of epithelial cells on a confined substratum cause overcrowding that leads to their extrusion and consequent death owing to the loss of survival factors. These results suggest that live cell extrusion could be a tumour-suppressive mechanism that prevents the accumulation of excess epithelial cells.


Asunto(s)
Células Epiteliales/citología , Homeostasis , Aletas de Animales/anatomía & histología , Aletas de Animales/citología , Aletas de Animales/embriología , Animales , Apoptosis , Recuento de Células , Muerte Celular , Línea Celular , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Colon/citología , Perros , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Células Epidérmicas , Epidermis/embriología , Humanos , Canales Iónicos/deficiencia , Canales Iónicos/genética , Canales Iónicos/metabolismo , Lisofosfolípidos/metabolismo , Modelos Biológicos , Neoplasias/patología , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
BMC Bioinformatics ; 18(1): 280, 2017 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-28549411

RESUMEN

BACKGROUND: Image segmentation and registration techniques have enabled biologists to place large amounts of volume data from fluorescence microscopy, morphed three-dimensionally, onto a common spatial frame. Existing tools built on volume visualization pipelines for single channel or red-green-blue (RGB) channels have become inadequate for the new challenges of fluorescence microscopy. For a three-dimensional atlas of the insect nervous system, hundreds of volume channels are rendered simultaneously, whereas fluorescence intensity values from each channel need to be preserved for versatile adjustment and analysis. Although several existing tools have incorporated support of multichannel data using various strategies, the lack of a flexible design has made true many-channel visualization and analysis unavailable. The most common practice for many-channel volume data presentation is still converting and rendering pseudosurfaces, which are inaccurate for both qualitative and quantitative evaluations. RESULTS: Here, we present an alternative design strategy that accommodates the visualization and analysis of about 100 volume channels, each of which can be interactively adjusted, selected, and segmented using freehand tools. Our multichannel visualization includes a multilevel streaming pipeline plus a triple-buffer compositing technique. Our method also preserves original fluorescence intensity values on graphics hardware, a crucial feature that allows graphics-processing-unit (GPU)-based processing for interactive data analysis, such as freehand segmentation. We have implemented the design strategies as a thorough restructuring of our original tool, FluoRender. CONCLUSION: The redesign of FluoRender not only maintains the existing multichannel capabilities for a greatly extended number of volume channels, but also enables new analysis functions for many-channel data from emerging biomedical-imaging techniques.


Asunto(s)
Programas Informáticos , Algoritmos , Animales , Batrachoidiformes/metabolismo , Extremidades/anatomía & histología , Ojo/anatomía & histología , Ojo/patología , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Ratones , Microscopía Fluorescente , Pez Cebra/anatomía & histología , Pez Cebra/fisiología
5.
Dev Dyn ; 244(6): 785-96, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25694140

RESUMEN

BACKGROUND: The application of the Gal4/UAS system to enhancer and gene trapping screens in zebrafish has greatly increased the ability to label and manipulate cell populations in multiple tissues, including the central nervous system (CNS). However the ability to select existing lines for specific applications has been limited by the lack of detailed expression analysis. RESULTS: We describe a Gal4 enhancer trap screen in which we used advanced image analysis, including three-dimensional confocal reconstructions and documentation of expression patterns at multiple developmental time points. In all, we have created and annotated 98 lines exhibiting a wide range of expression patterns, most of which include CNS expression. Expression was also observed in nonneural tissues such as muscle, skin epithelium, vasculature, and neural crest derivatives. All lines and data are publicly available from the Zebrafish International Research Center (ZIRC) from the Zebrafish Model Organism Database (ZFIN). CONCLUSIONS: Our detailed documentation of expression patterns, combined with the public availability of images and fish lines, provides a valuable resource for researchers wishing to study CNS development and function in zebrafish. Our data also suggest that many existing enhancer trap lines may have previously uncharacterized expression in multiple tissues and cell types.


Asunto(s)
Animales Modificados Genéticamente/genética , Sistema Nervioso Central/metabolismo , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Imagenología Tridimensional/métodos , Proteínas del Tejido Nervioso/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente/embriología , Sistema Nervioso Central/embriología , Elementos Transponibles de ADN , Bases de Datos Factuales , Genes Sintéticos , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Mutagénesis Insercional , Proteínas del Tejido Nervioso/biosíntesis , Neuronas/metabolismo , Especificidad de Órganos , Pez Cebra/embriología , Proteínas de Pez Cebra/biosíntesis , Proteína Fluorescente Roja
6.
Development ; 139(2): 359-72, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22186726

RESUMEN

Optic cup morphogenesis (OCM) generates the basic structure of the vertebrate eye. Although it is commonly depicted as a series of epithelial sheet folding events, this does not represent an empirically supported model. Here, we combine four-dimensional imaging with custom cell tracking software and photoactivatable fluorophore labeling to determine the cellular dynamics underlying OCM in zebrafish. Although cell division contributes to growth, we find it dispensable for eye formation. OCM depends instead on a complex set of cell movements coordinated between the prospective neural retina, retinal pigmented epithelium (RPE) and lens. Optic vesicle evagination persists for longer than expected; cells move in a pinwheel pattern during optic vesicle elongation and retinal precursors involute around the rim of the invaginating optic cup. We identify unanticipated movements, particularly of central and peripheral retina, RPE and lens. From cell tracking data, we generate retina, RPE and lens subdomain fate maps, which reveal novel adjacencies that might determine corresponding developmental signaling events. Finally, we find that similar movements also occur during chick eye morphogenesis, suggesting that the underlying choreography is conserved among vertebrates.


Asunto(s)
Movimiento Celular/fisiología , Ojo/embriología , Morfogénesis/fisiología , Transducción de Señal/fisiología , Pez Cebra/embriología , Análisis de Varianza , Animales , Ciclo Celular/fisiología , Embrión de Pollo , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Cristalino/fisiología , Retina/citología , Retina/fisiología , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/fisiología , Factores de Tiempo
7.
Nat Genet ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048795

RESUMEN

The contrast between the disruption of genome topology after cohesin loss and the lack of downstream gene expression changes instigates intense debates regarding the structure-function relationship between genome and gene regulation. Here, by analyzing transcriptome and chromatin accessibility at the single-cell level, we discover that, instead of dictating population-wide gene expression levels, cohesin supplies a general function to neutralize stochastic coexpression tendencies of cis-linked genes in single cells. Notably, cohesin loss induces widespread gene coactivation and chromatin co-opening tens of million bases apart in cis. Spatial genome and protein imaging reveals that cohesin prevents gene co-bursting along the chromosome and blocks spatial mixing of transcriptional hubs. Single-molecule imaging shows that cohesin confines the exploration of diverse enhancer and core promoter binding transcriptional regulators. Together, these results support that cohesin arranges nuclear topology to control gene coexpression in single cells.

8.
Elife ; 122023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37721371

RESUMEN

How memories are used by the brain to guide future action is poorly understood. In olfactory associative learning in Drosophila, multiple compartments of the mushroom body act in parallel to assign a valence to a stimulus. Here, we show that appetitive memories stored in different compartments induce different levels of upwind locomotion. Using a photoactivation screen of a new collection of split-GAL4 drivers and EM connectomics, we identified a cluster of neurons postsynaptic to the mushroom body output neurons (MBONs) that can trigger robust upwind steering. These UpWind Neurons (UpWiNs) integrate inhibitory and excitatory synaptic inputs from MBONs of appetitive and aversive memory compartments, respectively. After formation of appetitive memory, UpWiNs acquire enhanced response to reward-predicting odors as the response of the inhibitory presynaptic MBON undergoes depression. Blocking UpWiNs impaired appetitive memory and reduced upwind locomotion during retrieval. Photoactivation of UpWiNs also increased the chance of returning to a location where activation was terminated, suggesting an additional role in olfactory navigation. Thus, our results provide insight into how learned abstract valences are gradually transformed into concrete memory-driven actions through divergent and convergent networks, a neuronal architecture that is commonly found in the vertebrate and invertebrate brains.


Asunto(s)
Aprendizaje , Viento , Animales , Drosophila/fisiología , Olfato/fisiología , Neuronas/fisiología , Cuerpos Pedunculados/fisiología , Drosophila melanogaster/fisiología
9.
bioRxiv ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37398009

RESUMEN

To perform most behaviors, animals must send commands from higher-order processing centers in the brain to premotor circuits that reside in ganglia distinct from the brain, such as the mammalian spinal cord or insect ventral nerve cord. How these circuits are functionally organized to generate the great diversity of animal behavior remains unclear. An important first step in unraveling the organization of premotor circuits is to identify their constituent cell types and create tools to monitor and manipulate these with high specificity to assess their function. This is possible in the tractable ventral nerve cord of the fly. To generate such a toolkit, we used a combinatorial genetic technique (split-GAL4) to create 195 sparse driver lines targeting 198 individual cell types in the ventral nerve cord. These included wing and haltere motoneurons, modulatory neurons, and interneurons. Using a combination of behavioral, developmental, and anatomical analyses, we systematically characterized the cell types targeted in our collection. Taken together, the resources and results presented here form a powerful toolkit for future investigations of neural circuits and connectivity of premotor circuits while linking them to behavioral outputs.

10.
Elife ; 122023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36820523

RESUMEN

Precise, repeatable genetic access to specific neurons via GAL4/UAS and related methods is a key advantage of Drosophila neuroscience. Neuronal targeting is typically documented using light microscopy of full GAL4 expression patterns, which generally lack the single-cell resolution required for reliable cell type identification. Here, we use stochastic GAL4 labeling with the MultiColor FlpOut approach to generate cellular resolution confocal images at large scale. We are releasing aligned images of 74,000 such adult central nervous systems. An anticipated use of this resource is to bridge the gap between neurons identified by electron or light microscopy. Identifying individual neurons that make up each GAL4 expression pattern improves the prediction of split-GAL4 combinations targeting particular neurons. To this end, we have made the images searchable on the NeuronBridge website. We demonstrate the potential of NeuronBridge to rapidly and effectively identify neuron matches based on morphology across imaging modalities and datasets.


Asunto(s)
Proteínas de Drosophila , Neurociencias , Animales , Drosophila/metabolismo , Neuronas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Sistema Nervioso Central/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Elife ; 112022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36286237

RESUMEN

Brain function is mediated by the physiological coordination of a vast, intricately connected network of molecular and cellular components. The physiological properties of neural network components can be quantified with high throughput. The ability to assess many animals per study has been critical in relating physiological properties to behavior. By contrast, the synaptic structure of neural circuits is presently quantifiable only with low throughput. This low throughput hampers efforts to understand how variations in network structure relate to variations in behavior. For neuroanatomical reconstruction, there is a methodological gulf between electron microscopic (EM) methods, which yield dense connectomes at considerable expense and low throughput, and light microscopic (LM) methods, which provide molecular and cell-type specificity at high throughput but without synaptic resolution. To bridge this gulf, we developed a high-throughput analysis pipeline and imaging protocol using tissue expansion and light sheet microscopy (ExLLSM) to rapidly reconstruct selected circuits across many animals with single-synapse resolution and molecular contrast. Using Drosophila to validate this approach, we demonstrate that it yields synaptic counts similar to those obtained by EM, enables synaptic connectivity to be compared across sex and experience, and can be used to correlate structural connectivity, functional connectivity, and behavior. This approach fills a critical methodological gap in studying variability in the structure and function of neural circuits across individuals within and between species.


Asunto(s)
Conectoma , Microscopía , Animales , Conectoma/métodos , Sinapsis/fisiología , Drosophila , Expansión de Tejido
12.
J Neurosci ; 30(32): 10939-51, 2010 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-20702722

RESUMEN

In the retinotectal projection, synapses guide retinal ganglion cell (RGC) axon arbor growth by promoting branch formation and by selectively stabilizing branches. To ask whether presynaptic function is required for this dual role of synapses, we have suppressed presynaptic function in single RGCs using targeted expression of tetanus toxin light-chain fused to enhanced green fluorescent protein (TeNT-Lc:EGFP). Time-lapse imaging of singly silenced axons as they arborize in the tectum of zebrafish larvae shows that presynaptic function is not required for stabilizing branches or for generating an arbor of appropriate complexity. However, synaptic activity does regulate two distinct aspects of arbor development. First, single silenced axons fail to arrest formation of highly dynamic but short-lived filopodia that are a feature of immature axons. Second, single silenced axons fail to arrest growth of established branches and so occupy significantly larger territories in the tectum than active axons. However, if activity-suppressed axons had neighbors that were also silent, axonal arbors appeared normal in size. A similar reversal in phenotype was observed when single TeNT-Lc:EGFP axons are grown in the presence of the NMDA receptor antagonist MK801 [(+)-5-methyl-10,11- dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate]. Although expansion of arbor territory is prevented when neighbors are silent, formation of transient filopodia is not. These results suggest that synaptic activity by itself regulates filopodia formation regardless of activity in neighboring cells but that the ability to arrest growth and focusing of axonal arbors in the target is an activity-dependent, competitive process.


Asunto(s)
Axones/fisiología , Neuronas/fisiología , Retina/fisiología , Colículos Superiores/fisiología , Sinapsis/fisiología , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Calcio/metabolismo , Células Cultivadas , Proteínas de Unión al ADN/genética , Maleato de Dizocilpina/farmacología , Embrión de Mamíferos , Embrión no Mamífero , Antagonistas de Aminoácidos Excitadores/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Conos de Crecimiento/fisiología , Hipocampo/citología , Metaloendopeptidasas/genética , Nistagmo Optoquinético/efectos de los fármacos , Nistagmo Optoquinético/fisiología , Seudópodos/fisiología , Compuestos de Piridinio , Compuestos de Amonio Cuaternario , Ratas , Ratas Sprague-Dawley , Retina/citología , Retina/efectos de los fármacos , Colículos Superiores/citología , Colículos Superiores/efectos de los fármacos , Sinaptofisina/metabolismo , Toxina Tetánica/genética , Factores de Tiempo , Factores de Transcripción/genética , Transfección/métodos , Vías Visuales/efectos de los fármacos , Vías Visuales/fisiología , Pez Cebra , Proteínas de Pez Cebra/genética
13.
Elife ; 102021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34473057

RESUMEN

Neural circuits carry out complex computations that allow animals to evaluate food, select mates, move toward attractive stimuli, and move away from threats. In insects, the subesophageal zone (SEZ) is a brain region that receives gustatory, pheromonal, and mechanosensory inputs and contributes to the control of diverse behaviors, including feeding, grooming, and locomotion. Despite its importance in sensorimotor transformations, the study of SEZ circuits has been hindered by limited knowledge of the underlying diversity of SEZ neurons. Here, we generate a collection of split-GAL4 lines that provides precise genetic targeting of 138 different SEZ cell types in adult Drosophila melanogaster, comprising approximately one third of all SEZ neurons. We characterize the single-cell anatomy of these neurons and find that they cluster by morphology into six supergroups that organize the SEZ into discrete anatomical domains. We find that the majority of local SEZ interneurons are not classically polarized, suggesting rich local processing, whereas SEZ projection neurons tend to be classically polarized, conveying information to a limited number of higher brain regions. This study provides insight into the anatomical organization of the SEZ and generates resources that will facilitate further study of SEZ neurons and their contributions to sensory processing and behavior.


Asunto(s)
Drosophila melanogaster , Corteza Motora , Neuronas , Percepción del Gusto , Animales , Línea Celular , Análisis por Conglomerados , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Femenino , Corteza Motora/citología , Corteza Motora/fisiología , Neuronas/citología , Neuronas/fisiología , Percepción del Gusto/genética , Percepción del Gusto/fisiología
14.
PLoS One ; 15(12): e0236495, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33382698

RESUMEN

The fruit fly Drosophila melanogaster is an important model organism for neuroscience with a wide array of genetic tools that enable the mapping of individual neurons and neural subtypes. Brain templates are essential for comparative biological studies because they enable analyzing many individuals in a common reference space. Several central brain templates exist for Drosophila, but every one is either biased, uses sub-optimal tissue preparation, is imaged at low resolution, or does not account for artifacts. No publicly available Drosophila ventral nerve cord template currently exists. In this work, we created high-resolution templates of the Drosophila brain and ventral nerve cord using the best-available technologies for imaging, artifact correction, stitching, and template construction using groupwise registration. We evaluated our central brain template against the four most competitive, publicly available brain templates and demonstrate that ours enables more accurate registration with fewer local deformations in shorter time.


Asunto(s)
Encéfalo/anatomía & histología , Drosophila melanogaster/anatomía & histología , Tejido Nervioso/anatomía & histología , Neuronas/ultraestructura , Animales , Encéfalo/ultraestructura , Drosophila melanogaster/ultraestructura , Femenino , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Masculino , Microscopía Confocal , Microscopía Electrónica , Tejido Nervioso/ultraestructura
15.
Elife ; 92020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32255422

RESUMEN

Wiring a complex brain requires many neurons with intricate cell specificity, generated by a limited number of neural stem cells. Drosophila central brain lineages are a predetermined series of neurons, born in a specific order. To understand how lineage identity translates to neuron morphology, we mapped 18 Drosophila central brain lineages. While we found large aggregate differences between lineages, we also discovered shared patterns of morphological diversification. Lineage identity plus Notch-mediated sister fate govern primary neuron trajectories, whereas temporal fate diversifies terminal elaborations. Further, morphological neuron types may arise repeatedly, interspersed with other types. Despite the complexity, related lineages produce similar neuron types in comparable temporal patterns. Different stem cells even yield two identical series of dopaminergic neuron types, but with unrelated sister neurons. Together, these phenomena suggest that straightforward rules drive incredible neuronal complexity, and that large changes in morphology can result from relatively simple fating mechanisms.


Asunto(s)
Encéfalo/fisiología , Linaje de la Célula , Drosophila melanogaster/citología , Células-Madre Neurales/citología , Neurogénesis , Animales , Encéfalo/citología , Drosophila melanogaster/genética , Larva , Neuronas/citología
16.
Elife ; 92020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32880371

RESUMEN

The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly's brain.


Animal brains of all sizes, from the smallest to the largest, work in broadly similar ways. Studying the brain of any one animal in depth can thus reveal the general principles behind the workings of all brains. The fruit fly Drosophila is a popular choice for such research. With about 100,000 neurons ­ compared to some 86 billion in humans ­ the fly brain is small enough to study at the level of individual cells. But it nevertheless supports a range of complex behaviors, including navigation, courtship and learning. Thanks to decades of research, scientists now have a good understanding of which parts of the fruit fly brain support particular behaviors. But exactly how they do this is often unclear. This is because previous studies showing the connections between cells only covered small areas of the brain. This is like trying to understand a novel when all you can see is a few isolated paragraphs. To solve this problem, Scheffer, Xu, Januszewski, Lu, Takemura, Hayworth, Huang, Shinomiya et al. prepared the first complete map of the entire central region of the fruit fly brain. The central brain consists of approximately 25,000 neurons and around 20 million connections. To prepare the map ­ or connectome ­ the brain was cut into very thin 8nm slices and photographed with an electron microscope. A three-dimensional map of the neurons and connections in the brain was then reconstructed from these images using machine learning algorithms. Finally, Scheffer et al. used the new connectome to obtain further insights into the circuits that support specific fruit fly behaviors. The central brain connectome is freely available online for anyone to access. When used in combination with existing methods, the map will make it easier to understand how the fly brain works, and how and why it can fail to work correctly. Many of these findings will likely apply to larger brains, including our own. In the long run, studying the fly connectome may therefore lead to a better understanding of the human brain and its disorders. Performing a similar analysis on the brain of a small mammal, by scaling up the methods here, will be a likely next step along this path.


Asunto(s)
Conectoma/métodos , Drosophila melanogaster/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Encéfalo/fisiología , Femenino , Masculino
17.
IEEE Trans Vis Comput Graph ; 15(6): 1489-96, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19834225

RESUMEN

Confocal microscopy is widely used in neurobiology for studying the three-dimensional structure of the nervous system. Confocal image data are often multi-channel, with each channel resulting from a different fluorescent dye or fluorescent protein; one channel may have dense data, while another has sparse; and there are often structures at several spatial scales: subneuronal domains, neurons, and large groups of neurons (brain regions). Even qualitative analysis can therefore require visualization using techniques and parameters fine-tuned to a particular dataset. Despite the plethora of volume rendering techniques that have been available for many years, the techniques standardly used in neurobiological research are somewhat rudimentary, such as looking at image slices or maximal intensity projections. Thus there is a real demand from neurobiologists, and biologists in general, for a flexible visualization tool that allows interactive visualization of multi-channel confocal data, with rapid fine-tuning of parameters to reveal the three-dimensional relationships of structures of interest. Together with neurobiologists, we have designed such a tool, choosing visualization methods to suit the characteristics of confocal data and a typical biologist's workflow. We use interactive volume rendering with intuitive settings for multidimensional transfer functions, multiple render modes and multi-views for multi-channel volume data, and embedding of polygon data into volume data for rendering and editing. As an example, we apply this tool to visualize confocal microscopy datasets of the developing zebrafish visual system.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Confocal/métodos , Neurobiología/métodos , Interfaz Usuario-Computador , Animales , Ojo/embriología , Proyectos de Investigación , Pez Cebra/anatomía & histología
18.
Science ; 358(6363): 615-623, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-29097543

RESUMEN

Insects and mammals share similarities of neural organization underlying the perception of odors, taste, vision, sound, and gravity. We observed that insect somatosensation also corresponds to that of mammals. In Drosophila, the projections of all the somatosensory neuron types to the insect's equivalent of the spinal cord segregated into modality-specific layers comparable to those in mammals. Some sensory neurons innervate the ventral brain directly to form modality-specific and topological somatosensory maps. Ascending interneurons with dendrites in matching layers of the nerve cord send axons that converge to respective brain regions. Pathways arising from leg somatosensory neurons encode distinct qualities of leg movement information and play different roles in ground detection. Establishment of the ground pattern and genetic tools for neuronal manipulation should provide the basis for elucidating the mechanisms underlying somatosensation.


Asunto(s)
Drosophila melanogaster/fisiología , Células Receptoras Sensoriales/fisiología , Células Receptoras Sensoriales/ultraestructura , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Animales , Axones/fisiología , Axones/ultraestructura , Conducta Animal/fisiología , Dendritas/fisiología , Dendritas/ultraestructura , Interneuronas/citología , Interneuronas/fisiología , Locomoción , Actividad Motora , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Médula Espinal/fisiología , Sinapsis/fisiología , Sinapsis/ultraestructura
19.
Curr Biol ; 27(9): 1303-1313, 2017 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-28434858

RESUMEN

Building a sizable, complex brain requires both cellular expansion and diversification. One mechanism to achieve these goals is production of multiple transiently amplifying intermediate neural progenitors (INPs) from a single neural stem cell. Like mammalian neural stem cells, Drosophila type II neuroblasts utilize INPs to produce neurons and glia. Within a given lineage, the consecutively born INPs produce morphologically distinct progeny, presumably due to differential inheritance of temporal factors. To uncover the underlying temporal fating mechanisms, we profiled type II neuroblasts' transcriptome across time. Our results reveal opposing temporal gradients of Imp and Syp RNA-binding proteins (descending and ascending, respectively). Maintaining high Imp throughout serial INP production expands the number of neurons and glia with early temporal fate at the expense of cells with late fate. Conversely, precocious upregulation of Syp reduces the number of cells with early fate. Furthermore, we reveal that the transcription factor Seven-up initiates progression of the Imp/Syp gradients. Interestingly, neuroblasts that maintain initial Imp/Syp levels can still yield progeny with a small range of early fates. We therefore propose that the Seven-up-initiated Imp/Syp gradients create coarse temporal windows within type II neuroblasts to pattern INPs, which subsequently undergo fine-tuned subtemporal patterning.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores de Esteroides/metabolismo , Animales , Ciclo Celular , Linaje de la Célula , Proliferación Celular , Drosophila melanogaster/metabolismo , Perfilación de la Expresión Génica , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Factor de Células Madre/metabolismo
20.
J Comp Neurol ; 497(6): 928-58, 2006 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-16802334

RESUMEN

In insects, visual information is processed in the optic lobe and conveyed to the central brain. Although neural circuits within the optic lobe have been studied extensively, relatively little is known about the connection between the optic lobe and the central brain. To understand how visual information is read by the neurons of the central brain, and what kind of centrifugal neurons send the control signal from the central brain to the optic lobe, we performed a systematic analysis of the visual projection neurons that connect the optic lobe and the central brain of Drosophila melanogaster. By screening approximately 4,000 GAL4 enhancer-trap strains we identified 44 pathways. The overall morphology and the direction of information of each pathway were investigated by expressing cytoplasmic and presynapsis-targeted fluorescent reporters. A canonical nomenclature system was introduced to describe the area of projection in the central brain. As the first part of a series of articles, we here describe 14 visual projection neurons arising specifically from the lobula. Eight pathways form columnar arborization in the lobula, whereas the remaining six form tangential or tree-like arborization. Eleven are centripetal pathways, among which nine terminate in the ventrolateral protocerebrum. Terminals of each columnar pathway form glomerulus-like structures in different areas of the ventrolateral protocerebrum. The posterior lateral protocerebrum and the optic tubercle were each contributed by a single centripetal pathway. Another pathway connects the lobula on each side of the brain. Two centrifugal pathways convey signals from the posterior lateral protocerebrum to the lobula.


Asunto(s)
Drosophila melanogaster/clasificación , Drosophila melanogaster/fisiología , Neuronas/clasificación , Neuronas/fisiología , Lóbulo Óptico de Animales no Mamíferos/fisiología , Vías Visuales/fisiología , Animales , Drosophila melanogaster/anatomía & histología , Femenino , Lóbulo Óptico de Animales no Mamíferos/anatomía & histología , Vías Visuales/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA