Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(4): e2317452121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38236729

RESUMEN

Bacterial flagella and type IV pili (TFP) are surface appendages that enable motility and mechanosensing through distinct mechanisms. These structures were previously thought to have no components in common. Here, we report that TFP and some flagella share proteins PilO, PilN, and PilM, which we identified as part of the Helicobacter pylori flagellar motor. H. pylori mutants lacking PilO or PilN migrated better than wild type in semisolid agar because they continued swimming rather than aggregated into microcolonies, mimicking the TFP-regulated surface response. Like their TFP homologs, flagellar PilO/PilN heterodimers formed a peripheral cage that encircled the flagellar motor. These results indicate that PilO and PilN act similarly in flagella and TFP by differentially regulating motility and microcolony formation when bacteria encounter surfaces.


Asunto(s)
Proteínas Bacterianas , Fimbrias Bacterianas , Proteínas Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Bacterias , Flagelos/fisiología
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35046042

RESUMEN

The flagellar motor stator is an ion channel nanomachine that assembles as a ring of the MotA5MotB2 units at the flagellar base. The role of accessory proteins required for stator assembly and activation remains largely enigmatic. Here, we show that one such assembly factor, the conserved protein FliL, forms an integral part of the Helicobacter pylori flagellar motor in a position that colocalizes with the stator. Cryogenic electron tomography reconstructions of the intact motor in whole wild-type cells and cells lacking FliL revealed that the periplasmic domain of FliL (FliL-C) forms 18 circumferentially positioned rings integrated with the 18 MotAB units. FliL-C formed partial rings in the crystal, and the crystal structure-based full ring model was consistent with the shape of the rings observed in situ. Our data suggest that each FliL ring is coaxially sandwiched between the MotA ring and the dimeric periplasmic MotB moiety of the stator unit and that the central hole of the FliL ring has density that is consistent with the plug/linker region of MotB in its extended, active conformation. Significant structural similarities were found between FliL-C and stomatin/prohibitin/flotillin/HflK/C domains of scaffolding proteins, suggesting that FliL acts as a scaffold. The binding energy released upon association of FliL with the stator units could be used to power the release of the plug helices. The finding that isolated FliL-C forms stable partial rings provides an insight into the putative mechanism by which the FliL rings assemble around the stator units.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Helicobacter pylori/fisiología , Proteínas de la Membrana/genética , Modelos Moleculares , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Complejos Multiproteicos/química , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Relación Estructura-Actividad
3.
J Bacteriol ; 206(4): e0040623, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38446058

RESUMEN

The bacterial chemotaxis system is a well-understood signaling pathway that promotes bacterial success. Chemotaxis systems comprise chemoreceptors and the CheA kinase, linked by CheW or CheV scaffold proteins. Scaffold proteins provide connections between chemoreceptors and CheA and also between chemoreceptors to create macromolecular arrays. Chemotaxis is required for host colonization by many microbes, including the stomach pathogen Helicobacter pylori. This bacterium builds chemoreceptor-CheA contacts with two distinct scaffold proteins, CheW and CheV1. H. pylori cheW or cheV1 deletion mutants both lose chemoreceptor array formation, but show differing semisolid agar chemotaxis assay behaviors: ∆cheW mutants exhibit total migration failure, whereas ∆cheV1::cat mutants display a 50% reduction. On investigating these varied responses, we found that both mutants initially struggle with migration. However, over time, ∆cheV1::cat mutants develop a stable, enhanced migration capability, termed "migration-able" (Mig+). Whole-genome sequencing analysis of four distinct ∆cheV1::cat Mig+ strains identified single-nucleotide polymorphisms (SNPs) in hpg27_252 (hp0273) that were predicted to truncate the encoded protein. Computational analysis of the hpg27_252-encoded protein revealed it encoded a hypothetical protein that was a remote homolog of the PilO Type IV filament membrane alignment complex protein. Although H. pylori lacks Type IV filaments, our analysis showed it retains an operon of genes for homologs of PilO, PilN, and PilM. Deleting hpg27_252 in the ∆cheV1::cat or wild type strain resulted in enhanced migration in semisolid agar. Our study thus reveals that while cheV1 mutants initially have significant migration defects, they can recover the migration ability through genetic suppressors, highlighting a complex regulatory mechanism in bacterial migration. IMPORTANCE: Chemotactic motility, present in over half of bacteria, depends on chemotaxis signaling systems comprising receptors, kinases, and scaffold proteins. In Helicobacter pylori, a stomach pathogen, chemotaxis is crucial for colonization, with CheV1 and CheW as key scaffold proteins. While both scaffolds are essential for building chemoreceptor complexes, their roles vary in other assays. Our research reexamines cheV1 mutants' behavior in semisolid agar, a standard chemotaxis test. Initially, cheV1 mutants exhibited defects similar to those of cheW mutants, but they evolved genetic suppressors that enhanced migration. These suppressors involve mutations in a previously uncharacterized gene, unknown in motility behavior. Our findings highlight the significant chemotaxis defects in cheV1 mutants and identify new elements influencing bacterial motility.


Asunto(s)
Proteínas de Escherichia coli , Helicobacter pylori , Proteínas Bacterianas/genética , Helicobacter pylori/genética , Agar , Quimiotaxis/fisiología , Células Quimiorreceptoras , Proteínas de la Membrana/genética , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Histidina Quinasa
4.
Infect Immun ; 91(1): e0032222, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36533917

RESUMEN

Helicobacter pylori colonizes half of the world's population and is responsible for a significant disease burden by causing gastritis, peptic ulcers, and gastric cancer. The development of host inflammation drives these diseases, but there are still open questions in the field about how H. pylori controls this process. We characterized H. pylori inflammation using an 8-month mouse infection time course and comparison of the wild type (WT) and a previously identified mutant lacking the TlpA chemoreceptor that causes elevated inflammation. Our work shows that H. pylori chronic-stage corpus inflammation undergoes surprising fluctuations, with changes in Th17 and eosinophil numbers. The H. pylori tlpA mutant changed the inflammation temporal characteristics, resulting in different inflammation from the wild type at some time points. tlpA mutants have equivalent total and gland colonization in late-stage infections. During early infection, in contrast, they show elevated gland and total colonization compared to those by WT. Our results suggest the chronic inflammation setting is dynamic and may be influenced by colonization properties of early infection.


Asunto(s)
Gastritis , Infecciones por Helicobacter , Helicobacter pylori , Animales , Ratones , Helicobacter pylori/genética , Quimiotaxis , Proteínas Bacterianas/genética , Inflamación , Mucosa Gástrica
5.
J Bacteriol ; 204(9): e0023122, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35972258

RESUMEN

Many bacteria and archaea rely on chemotaxis signal transduction systems for optimal fitness. These complex, multiprotein signaling systems have core components found in all chemotactic microbes, as well as variable proteins found in only some species. We do not yet understand why these variations exist or whether there are specific niches that favor particular chemotaxis signaling organization. One variation is in the presence/absence of the chemotaxis methylation adaptation enzymes CheB and CheR. Genes for CheB and CheR are missing in the gastric pathogen Helicobacter pylori but present in related Helicobacter that colonize the liver or intestine. In this work, we asked whether there was a general pattern of CheB/CheR across multiple Helicobacter species. Helicobacter spp. all possess chemotactic behavior, based on the presence of genes for core signaling proteins CheA, CheW, and chemoreceptors. Genes for the CheB and CheR proteins, in contrast, were variably present. Niche mapping supported the idea that these genes were present in enterohepatic Helicobacter species and absent in gastric ones. We then analyzed whether there were differences between gastric and enterohepatic species in the CheB/CheR chemoreceptor target methylation sites. Indeed, these sites were less conserved in gastric species that lack CheB/CheR. Lastly, we determined that cheB and cheR could serve as markers to indicate whether an unknown Helicobacter species was of enterohepatic or gastric origin. Overall, these findings suggest the interesting idea that methylation-based adaptation is not required in specific environments, particularly the stomach. IMPORTANCE Chemotaxis signal transduction systems are common in the archaeal and bacterial world, but not all systems contain the same components. The rationale for this system variation remains unknown. In this report, comparative genomics analysis showed that the presence/absence of CheR and CheB is one main variation within the Helicobacter genus, and it is strongly associated with the niche of Helicobacter species: gastric Helicobacter species, which infect animal stomachs, have lost their CheB and CheR, while enterohepatic Helicobacter species, which infect the liver and intestine, retain them. This study not only provides an example that a chemotaxis system variant is associated with particular niches but also proposes that CheB and CheR are new markers distinguishing gastric from enterohepatic Helicobacter species.


Asunto(s)
Quimiotaxis , Helicobacter , Animales , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Quimiotaxis/fisiología , Helicobacter/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Metilación , Estómago
6.
Infect Immun ; 89(2)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33168589

RESUMEN

Helicobacter pylori is a chronic bacterial pathogen that thrives in several regions of the stomach, causing inflammation that can vary by site and result in distinct disease outcomes. Whether the regions differ in terms of host-derived metabolites is not known. We thus characterized the regional variation of the metabolomes of mouse gastric corpus and antrum organoids and tissue. The uninfected secreted organoid metabolites differed between the corpus and antrum in only seven metabolites as follows: lactic acid, malic acid, phosphoethanolamine, alanine, uridine, glycerol, and isoleucine. Several of the secreted chemicals were depleted upon H. pylori infection in both regions, including urea, cholesterol, glutamine, fumaric acid, lactic acid, citric acid, malic acid, and multiple nonessential amino acids. These results suggest a model in which H. pylori preferentially uses carboxylic acids and amino acids in complex environments, and these are found in both the corpus and antrum. When organoid metabolites were compared to mouse tissue, there was little overlap. The tissue corpus and antrum metabolomes were distinct, including antrum-elevated 5-methoxytryptamine, lactic acid, and caprylic acid, and corpus-elevated phospholipid products. The corpus and antrum remained distinct over an 8-month infection time course. The antrum displayed no significant changes between the time points in contrast to the corpus, which exhibited metabolite changes that were consistent with stress, tissue damage, and depletion of key nutrients, such as glutamine and fructose-6-phosphate. Overall, our results suggest that the corpus and antrum have largely but not completely overlapping metabolomes that change moderately upon H. pylori infection.


Asunto(s)
Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiología , Gastritis/microbiología , Helicobacter pylori/aislamiento & purificación , Helicobacter pylori/patogenicidad , Antro Pilórico/metabolismo , Antro Pilórico/microbiología , Animales , Femenino , Gastritis/fisiopatología , Humanos , Metabolómica , Ratones , Ratones Endogámicos C57BL , Modelos Animales
7.
Proc Natl Acad Sci U S A ; 114(11): 2970-2975, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28242706

RESUMEN

Although it is appreciated that bacterial chemotaxis systems rely on coupling, also called scaffold, proteins to both connect input receptors with output kinases and build interkinase connections that allow signal amplification, it is not yet clear why many systems use more than one coupling protein. We examined the distinct functions for multiple coupling proteins in the bacterial chemotaxis system of Helicobacter pylori, which requires two nonredundant coupling proteins for chemotaxis: CheW and CheV1, a hybrid of a CheW and a phosphorylatable receiver domain. We report that CheV1 and CheW have largely redundant abilities to interact with chemoreceptors and the CheA kinase, and both similarly activated CheA's kinase activity. We discovered, however, that they are not redundant for formation of the higher order chemoreceptor arrays that are known to form via CheA-CheW interactions. In support of this possibility, we found that CheW and CheV1 interact with each other and with CheA independent of the chemoreceptors. Therefore, it seems that some microbes have modified array formation to require CheW and CheV1. Our data suggest that multiple coupling proteins may be used to provide flexibility in the chemoreceptor array formation.


Asunto(s)
Quimiotaxis/fisiología , Transducción de Señal , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/química , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Fosforilación , Unión Proteica
8.
J Biol Chem ; 293(36): 13961-13973, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-29991595

RESUMEN

Bacterial flagella are rotary nanomachines that contribute to bacterial fitness in many settings, including host colonization. The flagellar motor relies on the multiprotein flagellar motor-switch complex to govern flagellum formation and rotational direction. Different bacteria exhibit great diversity in their flagellar motors. One such variation is exemplified by the motor-switch apparatus of the gastric pathogen Helicobacter pylori, which carries an extra switch protein, FliY, along with the more typical FliG, FliM, and FliN proteins. All switch proteins are needed for normal flagellation and motility in H. pylori, but the molecular mechanism of their assembly is unknown. To fill this gap, we examined the interactions among these proteins. We found that the C-terminal SpoA domain of FliY (FliYC) is critical to flagellation and forms heterodimeric complexes with the FliN and FliM SpoA domains, which are ß-sheet domains of type III secretion system proteins. Surprisingly, unlike in other flagellar switch systems, neither FliY nor FliN self-associated. The crystal structure of the FliYC-FliNC complex revealed a saddle-shaped structure homologous to the FliN-FliN dimer of Thermotoga maritima, consistent with a FliY-FliN heterodimer forming the functional unit. Analysis of the FliYC-FliNC interface indicated that oppositely charged residues specific to each protein drive heterodimer formation. Moreover, both FliYC-FliMC and FliYC-FliNC associated with the flagellar regulatory protein FliH, explaining their important roles in flagellation. We conclude that H. pylori uses a FliY-FliN heterodimer instead of a homodimer and creates a switch complex with SpoA domains derived from three distinct proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flagelos/química , Helicobacter pylori/química , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Sistemas de Secreción Tipo III/química , Cristalografía por Rayos X , Flagelos/ultraestructura , Proteínas de la Membrana , Complejos Multiproteicos/química , Dominios Proteicos
9.
Infect Immun ; 87(9)2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31262979

RESUMEN

Helicobacter pylori is a pathogen that chronically colonizes the stomachs of approximately half of the world's population and contributes to the development of gastric inflammation. We demonstrated previously in vivo that H. pylori uses motility to preferentially colonize injury sites in the mouse stomach. However, the chemoreceptor responsible for sensing gastric injury has not yet been identified. In this study, we utilized murine gastric organoids (gastroids) and mutant H. pylori strains to investigate the components necessary for H. pylori chemotaxis. High-intensity 730-nm light (two-photon photodamage) was used to cause single-cell damage in gastroids, and repair of the damage was monitored over time; complete repair occurred within ∼10 min in uninfected gastroids. Wild-type H. pylori accumulated at the damage site after gastric damage induction. In contrast, mutants lacking motility (ΔmotB) or chemotaxis (ΔcheY) did not accumulate at the injury site. Using mutants lacking individual chemoreceptors, we found that only TlpB was required for H. pylori accumulation, while TlpA, TlpC, and TlpD were dispensable. All strains that were able to accumulate at the damage site limited repair. When urea (an identified chemoattractant sensed by TlpB) was microinjected into the gastroid lumen, it prevented the accumulation of H. pylori at damage sites. Overall, our findings demonstrate that H. pylori colonizes and limits repair at damage sites via chemotactic motility that requires the TlpB chemoreceptor to sense signals generated by gastric epithelial cells.


Asunto(s)
Proteínas Bacterianas/fisiología , Factores Quimiotácticos/farmacología , Quimiotaxis/fisiología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/efectos de los fármacos , Gastropatías/microbiología , Animales , Modelos Animales de Enfermedad , Mucosa Gástrica/microbiología , Ratones
10.
Infect Immun ; 86(5)2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29507083

RESUMEN

The epithelial layer of the gastrointestinal tract contains invaginations, called glands or crypts, which are colonized by symbiotic and pathogenic microorganisms and may function as designated niches for certain species. Factors that control gland colonization are poorly understood, but bacterial chemotaxis aids occupation of these sites. We report here that a Helicobacter pylori cytoplasmic chemoreceptor, TlpD, is required for gland colonization in the stomach. tlpD mutants demonstrate gland colonization defects characterized by a reduction in the percentage of glands colonized but not in the number of bacteria per gland. Consistent with TlpD's reported role in reactive oxygen species (ROS) avoidance, tlpD mutants showed hallmarks of exposure to high ROS. To assess the role of host-generated ROS in TlpD-dependent gland colonization, we utilized mice that lack either the ability to generate epithelial hydrogen peroxide or immune cell superoxide. tlpD gland colonization defects were rescued to wild-type H. pylori levels in both of these mutants. These results suggest that multiple types of innate immune-generated ROS production limit gland colonization and that bacteria have evolved specific mechanisms to sense and direct their motility in response to this signal and thus spread throughout tissue.


Asunto(s)
Quimiotaxis/fisiología , Mucosa Gástrica/microbiología , Helicobacter pylori/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Portador Sano , Femenino , Regulación de la Expresión Génica , Genes Bacterianos , Humanos , Masculino , Ratones , Ratones Noqueados , Mutación
11.
Infect Immun ; 85(1)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27795352

RESUMEN

The human pathogen Helicobacter pylori uses the host receptor α5ß1 integrin to trigger inflammation in host cells via its cag pathogenicity island (cag PAI) type IV secretion system (T4SS). Here, we report that the H. pylori ImaA protein (HP0289) decreases the action of the cag PAI T4SS via tempering the bacterium's interaction with α5ß1 integrin. Previously, imaA-null mutants were found to induce an elevated inflammatory response that was dependent on the cag PAI T4SS; here we extend those findings to show that the elevated response is independent of the CagA effector protein. To understand how ImaA could be affecting cag PAI T4SS activity at the host cell interface, we utilized the Phyre structural threading program and found that ImaA has a region with remote homology to bacterial integrin-binding proteins. This region was required for ImaA function. Unexpectedly, we observed that imaA mutants bound higher levels of α5ß1 integrin than wild-type H. pylori, an outcome that required the predicted integrin-binding homology region of ImaA. Lastly, we report that ImaA directly affected the amount of host cell ß1 integrin but not other cellular integrins. Our results thus suggest a model in which H. pylori employs ImaA to regulate interactions between integrin and the T4SS and thus alter the host inflammatory strength.


Asunto(s)
Proteínas Bacterianas/genética , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Interacciones Huésped-Patógeno/genética , Integrina alfa5beta1/genética , Línea Celular Tumoral , Islas Genómicas/genética , Humanos , Mutación/genética , Unión Proteica/genética , Transporte de Proteínas/genética , Sistemas de Secreción Tipo IV/genética
12.
PLoS Pathog ; 11(5): e1004933, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26000450

RESUMEN

Two-component signal transduction systems (TCS) are used by bacteria to sense and respond to their environment. TCS are typically composed of a sensor histidine kinase (HK) and a response regulator (RR). The Vibrio cholerae genome encodes 52 RR, but the role of these RRs in V. cholerae pathogenesis is largely unknown. To identify RRs that control V. cholerae colonization, in-frame deletions of each RR were generated and the resulting mutants analyzed using an infant mouse intestine colonization assay. We found that 12 of the 52 RR were involved in intestinal colonization. Mutants lacking one previously uncharacterized RR, VCA0566 (renamed VxrB), displayed a significant colonization defect. Further experiments showed that VxrB phosphorylation state on the predicted conserved aspartate contributes to intestine colonization. The VxrB regulon was determined using whole genome expression analysis. It consists of several genes, including those genes that create the type VI secretion system (T6SS). We determined that VxrB is required for T6SS expression using several in vitro assays and bacterial killing assays, and furthermore that the T6SS is required for intestinal colonization. vxrB is encoded in a four gene operon and the other vxr operon members also modulate intestinal colonization. Lastly, though ΔvxrB exhibited a defect in single-strain intestinal colonization, the ΔvxrB strain did not show any in vitro growth defect. Overall, our work revealed that a small set of RRs is required for intestinal colonization and one of these regulators, VxrB affects colonization at least in part through its regulation of T6SS genes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Intestinos/microbiología , Regulón/genética , Sistemas de Secreción Tipo VI/fisiología , Vibrio cholerae/fisiología , Factores de Virulencia/metabolismo , Virulencia , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Perfilación de la Expresión Génica , Ratones , Datos de Secuencia Molecular , ARN Bacteriano/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Factores de Virulencia/genética
13.
J Bacteriol ; 198(11): 1563-75, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27002127

RESUMEN

UNLABELLED: Cytoplasmic chemoreceptors are widespread among prokaryotes but are far less understood than transmembrane chemoreceptors, despite being implicated in many processes. One such cytoplasmic chemoreceptor is Helicobacter pylori TlpD, which is required for stomach colonization and drives a chemotaxis response to cellular energy levels. Neither the signals sensed by TlpD nor its molecular mechanisms of action are known. We report here that TlpD functions independently of the other chemoreceptors. When TlpD is the sole chemoreceptor, it is able to localize to the pole and recruits CheW, CheA, and at least two CheV proteins to this location. It loses the normal membrane association that appears to be driven by interactions with other chemoreceptors and with CheW, CheV1, and CheA. These results suggest that TlpD can form an autonomous signaling unit. We further determined that TlpD mediates a repellent chemotaxis response to conditions that promote oxidative stress, including being in the presence of iron, hydrogen peroxide, paraquat, and metronidazole. Last, we found that all tested H. pylori strains express TlpD, whereas other chemoreceptors were present to various degrees. Our data suggest a model in which TlpD coordinates a signaling complex that responds to oxidative stress and may allow H. pylori to avoid areas of the stomach with high concentrations of reactive oxygen species. IMPORTANCE: Helicobacter pylori senses its environment with proteins called chemoreceptors. Chemoreceptors integrate this sensory information to affect flagellum-based motility in a process called chemotaxis. Chemotaxis is employed during infection and presumably aids H. pylori in encountering and colonizing preferred niches. A cytoplasmic chemoreceptor named TlpD is particularly important in this process, and we report here that this chemoreceptor is able to operate independently of other chemoreceptors to organize a chemotaxis signaling complex and mediate a repellent response to oxidative stress conditions. H. pylori encounters and must cope with oxidative stress during infection due to oxygen and reactive oxygen species produced by host cells. TlpD's repellent response may allow the bacteria to escape niches experiencing inflammation and elevated reactive oxygen species (ROS) production.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quimiotaxis/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Helicobacter pylori/fisiología , Proteínas Bacterianas/genética , Estrés Oxidativo , Transducción de Señal
15.
Mol Microbiol ; 97(6): 1063-78, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26061894

RESUMEN

Chemotaxis is important for Helicobacter pylori to colonize the stomach. Like other bacteria, H. pylori uses chemoreceptors and conserved chemotaxis proteins to phosphorylate the flagellar rotational response regulator, CheY, and modulate the flagellar rotational direction. Phosphorylated CheY is returned to its non-phosphorylated state by phosphatases such as CheZ. In previously studied cases, chemotaxis phosphatases localize to the cellular poles by interactions with either the CheA chemotaxis kinase or flagellar motor proteins. We report here that the H. pylori CheZ, CheZ(HP), localizes to the poles independently of the flagellar motor, CheA, and all typical chemotaxis proteins. Instead, CheZ(HP) localization depends on the chemotaxis regulatory protein ChePep, and reciprocally, ChePep requires CheZ(HP) for its polar localization. We furthermore show that these proteins interact directly. Functional domain mapping of CheZ(HP) determined the polar localization motif lies within the central domain of the protein and that the protein has regions outside of the active site that participate in chemotaxis. Our results suggest that CheZ(HP) and ChePep form a distinct complex. These results therefore suggest the intriguing idea that some phosphatases localize independently of the other chemotaxis and motility proteins, possibly to confer unique regulation on these proteins' activities.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quimiotaxis , Helicobacter pylori/metabolismo , Transducción de Señal , Proteínas Bacterianas/química , Flagelos/metabolismo , Helicobacter pylori/química , Helicobacter pylori/citología , Monoéster Fosfórico Hidrolasas/metabolismo , Multimerización de Proteína
16.
Environ Microbiol ; 18(3): 791-806, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26768806

RESUMEN

Helicobacter pylori is a human-specific pathogen that chronically infects about 50% of the world's population. After travelling through the harsh environment of the stomach lumen, H. pylori colonizes the mucosal surface and within the glands of the human stomach. During colonization, H. pylori uses motility and its chemotaxis signalling system to sense the environment to reach the gastric epithelium for colonization, where it is able to attach to the epithelial surface. The H. pylori population inside the stomach contains a subgroup of bacteria that are attached to the gastric epithelium and a larger subgroup of non-attached bacteria that are freely swimming. To establish a tight interaction between H. pylori and epithelial cells, the bacterium produces a variety of adhesins and delivers virulence factors. These lead to alterations in the host signalling pathways, inducing pro-inflammatory responses, apoptosis, uncontrolled cell proliferation, and eventually peptic ulcers and gastric cancer. To prevent disease and find a vaccine or better treatments, it is crucial to understand how H. pylori is able to sense its niche for chronic infection inside the stomach and how its virulence factors interact with the epithelial target cells.


Asunto(s)
Mucosa Gástrica/microbiología , Helicobacter pylori/fisiología , Adhesinas Bacterianas/metabolismo , Animales , Quimiotaxis , Infecciones por Helicobacter/microbiología , Humanos , Transducción de Señal , Neoplasias Gástricas/microbiología , Factores de Virulencia/metabolismo
17.
PLoS Pathog ; 10(7): e1004275, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25033386

RESUMEN

Helicobacter pylori (H. pylori) is a pathogen contributing to peptic inflammation, ulceration, and cancer. A crucial step in the pathogenic sequence is when the bacterium first interacts with gastric tissue, an event that is poorly understood in vivo. We have shown that the luminal space adjacent to gastric epithelial damage is a microenvironment, and we hypothesized that this microenvironment might enhance H. pylori colonization. Inoculation with 106 H. pylori (wild-type Sydney Strain 1, SS1) significantly delayed healing of acetic-acid induced ulcers at Day 1, 7 and 30 post-inoculation, and wild-type SS1 preferentially colonized the ulcerated area compared to uninjured gastric tissue in the same animal at all time points. Gastric resident Lactobacillus spp. did not preferentially colonize ulcerated tissue. To determine whether bacterial motility and chemotaxis are important to ulcer healing and colonization, we analyzed isogenic H. pylori mutants defective in motility (ΔmotB) or chemotaxis (ΔcheY). ΔmotB (10(6)) failed to colonize ulcerated or healthy stomach tissue. ΔcheY (10(6)) colonized both tissues, but without preferential colonization of ulcerated tissue. However, ΔcheY did modestly delay ulcer healing, suggesting that chemotaxis is not required for this process. We used two-photon microscopy to induce microscopic epithelial lesions in vivo, and evaluated accumulation of fluorescently labeled H. pylori at gastric damage sites in the time frame of minutes instead of days. By 5 min after inducing damage, H. pylori SS1 preferentially accumulated at the site of damage and inhibited gastric epithelial restitution. H. pylori ΔcheY modestly accumulated at the gastric surface and inhibited restitution, but did not preferentially accumulate at the injury site. H. pylori ΔmotB neither accumulated at the surface nor inhibited restitution. We conclude that bacterial chemosensing and motility rapidly promote H. pylori colonization of injury sites, and thereby biases the injured tissue towards sustained gastric damage.


Asunto(s)
Mucosa Gástrica , Infecciones por Helicobacter/inmunología , Helicobacter pylori/inmunología , Úlcera Gástrica/inmunología , Úlcera Gástrica/microbiología , Ácido Acético/efectos adversos , Ácido Acético/farmacología , Animales , Mucosa Gástrica/inmunología , Mucosa Gástrica/lesiones , Mucosa Gástrica/microbiología , Mucosa Gástrica/patología , Infecciones por Helicobacter/patología , Indicadores y Reactivos/efectos adversos , Indicadores y Reactivos/farmacología , Ratones , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/patología
18.
Annu Rev Microbiol ; 65: 389-410, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21939377

RESUMEN

Flagellar motility of Campylobacter jejuni and Helicobacter pylori influences host colonization by promoting migration through viscous milieus such as gastrointestinal mucus. This review explores mechanisms C. jejuni and H. pylori employ to control flagellar biosynthesis and chemotactic responses. These microbes tightly control the activities of σ(54) and σ(28) to mediate ordered flagellar gene expression. In addition to phase-variable and posttranslational mechanisms, flagellar biosynthesis is regulated spatially and numerically so that only a certain number of organelles are placed at polar sites. To mediate chemotaxis, C. jejuni and H. pylori combine basic chemotaxis signal transduction components with several accessory proteins. H. pylori is unusual in that it lacks a methylation-based adaptation system and produces multiple CheV coupling proteins. Chemoreceptors in these bacteria contain nonconserved ligand binding domains, with several chemoreceptors matched to environmental signals. Together, these mechanisms allow for swimming motility that is essential for colonization.


Asunto(s)
Campylobacter jejuni/fisiología , Quimiotaxis , Helicobacter pylori/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/genética , Flagelos/genética , Flagelos/fisiología , Regulación Bacteriana de la Expresión Génica , Helicobacter pylori/genética
19.
J Physiol ; 593(8): 1809-27, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25605613

RESUMEN

KEY POINTS: An in vitro approach to study gastric development is primary mouse-derived epithelium cultured as three-dimensional spheroids known as organoids. We have devised two unique gastric fundic-derived organoid cultures: model 1 for the expansion of gastric fundic stem cells, and model 2 for the maintenance of mature cell lineages. Organoids maintained in co-culture with immortalized stomach mesenchymal cells express robust numbers of surface pit, mucous neck, chief, endocrine and parietal cells. Histamine induced a significant decrease in intraluminal pH that was reversed by omeprazole in fundic organoids and indicated functional activity and regulation of parietal cells. Localized photodamage resulted in rapid cell exfoliation coincident with migration of neighbouring cells to the damaged area, sustaining epithelial continuity. We report the use of these models for studies of epithelial cell biology and cell damage and repair. ABSTRACT: Studies of gastric function and disease have been limited by the lack of extended primary cultures of the epithelium. An in vitro approach to study gastric development is primary mouse-derived antral epithelium cultured as three-dimensional spheroids known as organoids. There have been no reports on the use of organoids for gastric function. We have devised two unique gastric fundic-derived organoid cultures: model 1 for the expansion of gastric fundic stem cells, and model 2 for the maintenance of mature cell lineages. Both models were generated from single glands dissociated from whole fundic tissue and grown in basement membrane matrix (Matrigel) and organoid growth medium. Model 1 enriches for a stem cell-like niche via simple passage of the organoids. Maintained in Matrigel and growth medium, proliferating organoids expressed high levels of stem cell markers CD44 and Lgr5. Model 2 is a system of gastric organoids co-cultured with immortalized stomach mesenchymal cells (ISMCs). Organoids maintained in co-culture with ISMCs express robust numbers of surface pit, mucous neck, chief, endocrine and parietal cells. Histamine induced a significant decrease in intraluminal pH that was reversed by omeprazole in fundic organoids and indicated functional activity and regulation of parietal cells. Localized photodamage resulted in rapid cell exfoliation coincident with migration of neighbouring cells to the damaged area, sustaining epithelial continuity. Thus, we report the use of these models for studies of epithelial cell biology and cell damage and repair.


Asunto(s)
Técnicas de Cocultivo/métodos , Células Epiteliales/citología , Mucosa Gástrica/citología , Organoides/citología , Células Madre/citología , Animales , Diferenciación Celular , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA