Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 12451, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31462696

RESUMEN

Whether a coastal area is suitable for beach nourishments and can induce a growth in fresh groundwater resources depends on the appropriateness of the intended site for beach nourishments, and the attainable growth in fresh groundwater resources. In this study we presume that all eroding sandy beaches are suitable for large beach nourishments, and focus on the impact of these nourishments on fresh groundwater in various coastal settings. The growth in fresh groundwater resources - as a consequence of the construction of a beach nourishment - was quantified with 2-D variable-density groundwater models, for a global range in geological parameters and hydrological processes. Our simulation results suggest that large beach nourishments will likely lead to a (temporary) increase of fresh groundwater resources in most settings. However, for a substantial growth in fresh groundwater, the coastal site should receive sufficient groundwater recharge, consist of sediment with a low to medium hydraulic conductivity, and be subject to a limited number of land-surface inundations. Our global analysis shows that 17% of shorelines may consist of erosive sandy beaches, and of these sites 50% have a high potential suitability. This shows a considerable potential worldwide to combine coastal protection with an increase in fresh groundwater resources.

2.
Ground Water ; 53(5): 771-81, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25250661

RESUMEN

Groundwater-surface water (GW-SW) interaction in numerical groundwater flow models is generally simulated using a Cauchy boundary condition, which relates the flow between the surface water and the groundwater to the product of the head difference between the node and the surface water level, and a coefficient, often referred to as the "conductance." Previous studies have shown that in models with a low grid resolution, the resistance to GW-SW interaction below the surface water bed should often be accounted for in the parameterization of the conductance, in addition to the resistance across the surface water bed. Three conductance expressions that take this resistance into account were investigated: two that were presented by Mehl and Hill (2010) and the one that was presented by De Lange (1999). Their accuracy in low-resolution models regarding salt and water fluxes to a dense drainage network in a confined aquifer system was determined. For a wide range of hydrogeological conditions, the influence of (1) variable groundwater density; (2) vertical grid discretization; and (3) simulation of both ditches and tile drains in a single model cell was investigated. The results indicate that the conductance expression of De Lange (1999) should be used in similar hydrogeological conditions as considered in this paper, as it is better taking into account the resistance to flow below the surface water bed. For the cases that were considered, the influence of variable groundwater density and vertical grid discretization on the accuracy of the conductance expression of De Lange (1999) is small.


Asunto(s)
Agua Subterránea/análisis , Modelos Teóricos , Movimientos del Agua , Monitoreo del Ambiente , Fenómenos Geológicos , Agua Subterránea/química , Salinidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA